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Abstract In this article, the results achieved by applying GA-inspired heuris-
tic on Uncapacitated Single Allocation Hub Location Problem (USAHLP) are
discussed. Encoding scheme with two parts is implemented, with appropriate
objective functions and modified genetic operators. The article presents sev-
eral computational tests which have been conducted with ORLIB instances.
Procedures described in related work round distance matrix elements to few
digits, so rounding error is significant. Due to this fact, we developed exact to-
tal enumeration method for solving subproblem with fixed hubs, named Hub
Median Single Allocation Problem (HMSAP). Computational tests demon-
strate that GA-inspired heuristic reach all best solutions for USAHLP that
are previously obtained and verified branch-and-bound method for HMSAP.
Proposed heuristic successfully solved some instances that were unsolved be-
fore.
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1 Introduction

The past four decades have witnessed an explosive growth in the field of
network-based facility location modelling. The multitude of applications in
practice is a major reason for the great interest in that field. Computer and
telecommunication networks, DHL-like services and postal networks, as well
as transport systems can be analyzed as a hub network. All those systems
contain a set of facilities (locations) that interact with each other, and with
given distance and transportation cost. Instead of serving every user from
its assigned facility with a direct link, hub network allows the transportation
via specified hub facilities. Hubs serve as consolidation and connection points
between two locations. Each node is allocated to one or more hubs and the
flow from one node to another is realized via one or more hub facilities. Using
switching points in the network and increasing transportation between them
the capacity of the network can be used more efficiently. This strategy also
provides lower transportation cost per unit.

There are various model formulations proposed for the problem of choos-
ing subset of hubs in the given network. They involve capacity restrictions
on the hubs, fixed cost, predetermined number of hubs and other aspects.
Two allocation schemes in the network can be assumed: single allocation and
multiple allocation concept.

In the single allocation hub location problem each node must be assigned
to exactly one hub node so that all the transport from (to) each node goes
only through its hub. Multiple allocation scheme allows each facility to com-
municate with more than one hub node. If the number of switching centers is
fixed to p, we are dealing with p-hub problems. Capacitated versions of hub
problems also exist in the literature, but the nature of capacities is different.
The flows between hubs or between hubs and non-hubs can be limited. There
are also variants of capacitated hub problems that consider limits on the flow
into the hub node, through the node or fixed costs on hubs. One review of
hub location problems and their classification can be found in [5, 6].

2 Mathematical formulation

Consider a set I = {1, ..., n} of n distinct nodes in the network, where each
node denotes to origin/destination or potential hub location. The distance
from node i to node j is Cij , and triangle inequality may be assumed [6]. The
transportation demand from location i to j is denoted with Wij . Variable
Xik = 1 if the node i is allocated to hub established at node k. Therefore,
Xjj = 1 ⇔ j is hub. Otherwise, if node i is not allocated to hub at node k,
variable Xik = 0.

Each path from source to destination node consists of three components:
transfer from an origin to the first hub, transfer between the hubs and finally
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distribution from the last hub to the destination location. In this, single
allocation hub problem, is assumed that the flow from certain node involving
only one hub node in all transportation. Parameters χ and δ denote unit costs
for collection (communication from origin to the first hub) and distribution
(communication from last hub to destination), while α represents transfer
cost among hubs. The objective is location hub facilities to minimize the
total flow cost. The fixed cost for establishing hub node j is denoted with fj .
Using the notation mentioned above, the problem can be written as:

min
∑

i,j,k,l∈N

Wij(χCikXik + αCklXikXjl + δCjlXjl) +
∑

j

Xjjfj (1)

subject to ∑

k

Xik = 1, for every i (2)

Xkk −Xik ≥ 0 for every i, k (3)

Xik ∈ {0, 1} for every i, k (4)

The objective function (1) minimizes the sum of the origin-hub, hub-hub
and hub- destination flow costs multiplied with χ, α and δ factors respectively.
Equation (2) forces single allocation scheme - each node is assigned to exactly
one hub, and equation (3) allows that particular node can be assigned only
to established hub.

3 Previous work

Several methods for solving this problem are described in the literature [2, 3].
Due to the fact that this problem is NP hard, it is shown that its subprob-
lem Hub Median Single Allocation Problem - HMSAP is NP hard [6], many
authors recognized that good results can be obtained by applying evolution-
ary inspired solving strategies. In paper [1] several variants of hybridization
Genetic algorithm and Tabu search are proposed. Obtained results are pre-
sented on CAB problem instances (from ORLIB, described in [4]). In paper,
there isn’t any result obtained by applying proposed hybrid algorithms on
AP ORLIB instances.

Paper [11] proposed more advanced GA method for solving USAHLP. Pro-
posed method uses more efficient representation, better initialization (initial
number of hubs in item is set with more realism) and advanced crossover
operator that is well suited to the problem domain. However, in this paper
(it was also the case with previous methods) proposed GA method uses the
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simplest selection operator - proportional selection. Authors in [11] publish
obtained results for both CAB and AP instances.

Paper [7] describes SATLUHLP heuristic that solves USAHLP. Heuristic
SATLUHLP is hybrid of Simulated annealing and Tabu search. That heuristic
is divided into three levels: the first level is to determine the number of hubs;
the second level is to select the hub locations for a given number of hubs;
and the third level is to allocate the non-hubs to the chosen hubs. Presented
results are obtained by testing on ORLIB instances (CAB and AP) and those
results are compared with [11].

4 Proposed GA heuristic method

Genetic algorithms (GAs) are problem-solving metaheuristic methods rooted
in the mechanisms of evolution and natural genetics. The main idea was
introduced by Holland [9], and in the last three decades GAs have emerged
as effective, robust optimization and search methods.

4.1 Representation

Each gene of individual represents one node. Particular gene contains of two
parts. The first part is 1 or 0 - it indicates if hub is established at correspond-
ing node, or not. Second part contains number from set {0, 1, . . . , n−1}. That
number specifies which hub is assigned to fixed non-hub node. Naturally, ev-
ery hub is assigned to itself. For instance, if non-hub node is assigned to the
closest hub, then there will be 0 in the second part. Furthermore, if non-hub
node is assigned to hub that is more distant to node than closest hub, but
less distant than any other hub, there will be number 1 in second part of
genetic code, etc.

The first part of genetic code is generated in random manner. Due to the
fact that less distant hubs should be more often selected during generation,
it is preferable that second part of genetic code contains large number of
zeros. To accomplish that, probability that the first bit in each gene will be
set to 1 is 1.0/n. Bits that follows will have probability to be set to one
equals to the half of its predecessor probability - e.g. 0.5/n, 0.25/n, 0.125/n,
... respectively.

4.2 Objective function

Fitness of the individual is calculated according to following procedure:
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• First part of each gene gives indexes of established hubs.
• After set of established hubs is obtained, array of established hubs will be

sorted (for each non-hub node) in ascending order, according to distance
to that specific non-hub node.

• Element that corresponds to specific non-hub node is extracted from sec-
ond part of every gene. If extracted element has value r (r = 0, 1, ...,
n− 1), then r-th element of (adequately) sorted array will be index of the
hub which is specific node assigned to.

• Now, objective value (and fitness of individual) is obtained simply by sum-
ming distances source-hub, hub-hub and hub-destination, multiplied with
load and with corresponding parameters χ , α and δ.

Sorting of established hubs array according to distance, for each individual,
takes part in every generation and that requires the processor’s extra work.
However, the obtained results confirm our estimate that the processor’s extra
work has very little influence on overall time of algorithm execution.

4.3 Genetic operators

Genetic operators are designed in following way:

• GA uses FGTS [8] as selection operator. Parameter Ftour, that governs
selection method is not changed during execution of GA, and its value
is 5.4. That value is experimentally obtained. Moreover, FGTS selection
with Ftour = 5.4 behave very well in solving some similar problems.

• After selection, one-position crossover operator has been applied. Proba-
bility of crossover is 0.85, which means that about 85% individuals in pop-
ulation will produce offsprings, but in approximately 15% cases crossover
will not take part and offsprings will be identical to its parents. Crossover
point is chosen on the gene boundary. Therefore, there is no gene splitting.

• Evolutionary method uses simple mutation, which pseudo randomly changes
one bit in both parts of every gene. Mutation levels are different in dif-
ferent parts. The first bit in every gene mutates with probability 0.6/n.
The second bit in each gene mutates with probability 0.3/n and subse-
quent bits mutate with probability that is half of its predecessor mutation
probability (0.15/n , 0.075/n , 0.0375/n , 0.01875/n, etc. ).
During GA execution, sometimes happens that all individuals in popula-
tion have same bit at specified position. Such bits are known as frozen bits.
If number of frozen bits is l, then search space becomes 2l times smaller and
probability of premature convergence quickly rises. Selection and crossover
can not change frozen bit. Probability of classic mutation is often too small
to successfully restore lost subregions in search space. On the other side, if
probability of classic mutation is significant, GA pretty much behave like
pure random search procedure. Therefore, mutation probability will be in-
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creased only for frozen bits. In this GA, probability of mutation for frozen
bits in first part is two and half times higher than probability for non-frozen
bits, it is 1.5/n. Probability of mutation for frozen bits in second part is
one and half times higher comparing to non-frozen counterparts, so it is
0.225/n, 0.1125/n, 0.055625/n, etc. Reason for lower mutation probabili-
ties for bits in second part is importance that second part mainly contains
zeros. In section that describes representation is already highlighted that
zero in second part represents the nearest hub to specific non-hub node.
Obtained experimental results also justifies probability setting that is de-
scribed.

4.4 Other GA aspects

There are many aspects (beside representation, objective function and ge-
netic operators) that have significant influence on GA performance. Most
important among them are:

• Population has 150 individuals. Number of individuals does not increase
nor decrease during GA execution.

• GA uses steady-state replacement policy and elitist strategy - 100 best
fitted individuals (e.g. elite individuals) are directly transferred into new
generation and its fitness remains the same and should not be recalculated.

• Duplicate individuals are removed in every generation during GA execu-
tion. This is accomplished by setting fitness value of duplicated individual
to zero, so that individual won’t be selected to pass into new generation
during selection phase. On that way, genetic diversity is preserved and
premature convergence has very small probability.

• Sometimes, during GA execution it happens that individuals with the
same fitness value but different genetic code dominate the population. If
genetic codes of such dominating individuals are similar, it can bound GA
execution to some local extremum. In order to avoid similar situations,
we decided to limit the number of individuals with the same fitness and
different genetic code. In the current implementation, that number is 40.

• GA execution is stopped after 1000 generations when larger instances are
solved, or after 500 generations on small size USAHLP instances. Algo-
rithm is also stopped if best individual does not improve its value during
200 generations.

• Furthermore, performance of GA is improved by cashing GA [10] and cash
size is 5000.

• Previously described representation, initialization, selection and mutation
prevent creation of incorrect individuals, so there is no need for some
special correction.
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5 Computational results

Algorithms are tested on ORLIB instance set, taken from [4].
CAB (Civil Aeronautics Board) data set is based on information about

civil air traffic among USA cities. It contains 60 instances, with up to 25 nodes
and up to 4 hubs. In this instances is assumed that unit costs for collection
and distribution (χ and δ) is 1. Results of the proposed GA implementation
(just like implementations described in [7, 11]) obtain optimal solution for all
instances, with extremely short execution times. Therefore, results on CAB
instances are omitted from this paper and can be downloaded from http:
//www.matf.bg.ac.yu/ ∼vladaf/Science/USAHLP/cab.txt .

Data for AP (Australian Post) set are obtained from Australian Post Sys-
tem. AP contains up to 200 nodes that represent postal areas. Smaller size AP
instances are obtained by aggregation of the basic, large, data set. Distances
among cities fulfill triangle inequality, but load is not symmetric at all. AP
also includes fixed price for hub establishment. Suffix ”L” in instance name
will indicate that fixed costs are light, and suffix ”T” will indicate heavy fixed
costs. Larger AP instances, that are significantly larger and therefore more
difficult, make that algorithm executes for longer time. Those instances will
more likely give us better look on overall behavior of algorithm.

However, a new problem arises there: results (e.g. obtained solutions) that
are described in paper [11] are sometimes significantly different to solutions
that are obtained by proposed GA method. In direct, personal communica-
tion, we asked the author to help us to determine possible reasons for the
observed differences. In his answer, Topcuoglu speculates that the reason
for this is an accumulated rounding error, because he rounded the distance
matrix to three decimal places. Results that are published in [7] are not com-
pletely identical to results that gives proposed GA method, but difference is
much smaller comparing to [11], since distances are rounded up to six decimal
places.

In order to completely clear up dilemmas, we decided to obtained exact
solution of USAHLP subproblem, called Hub Median Single Allocation Prob-
lem - HMSAP. HMSAP problem is similar to USAHLP, but hubs are fixed. In
other words, HMSAP should make assignment of hubs to non-hub nodes so
overall traffic cost is minimal. Once when we get set of established hubs (note
that all algorithms in comparison got the same set of established hubs), we
obtained hub assignment by solving HMSAP problem with classical enumer-
ation algorithm. It is widely known that such algorithm guaranties optimality
of obtained solution.

Algorithms are executed on the computer with AMD Sempron 2.3+ pro-
cessor, which works at 1578 MHz clock and have 256 MB memory. During ex-
periments, computer works on UNIX (Knoppix 3.7) operating system. There
were activated all C compiler optimizations during compiling, including AMD
processor optimization. Proposed GA was executed 20 times for each problem
instance.
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Table 1 shows experimental results that are obtained by proposed GA
method, results obtained by HMSAP and results presented in [7, 11]. First
column identifies AP instance that is solved. Best solution obtained by GA
is presented in column GA.best. Column t contains average time (expressed
in seconds) that GA needs to obtain best solution, and column ttot contains
average time (also expressed in seconds) for finishing GA. In average, GA
finishes after gen generations.

Quality of obtained solution is quantified as average gap (denoted as
avg.gap and expressed in percents) and it is calculated by following formula:

avg.gap = 1
20

20∑
i=1

gapi , where gapi represent gap that is obtained during i-th

execution of GA on specific instance. Gap is calculated in respect to optimal
solution Opt.sol (if it is already known): gapi = soli−Opt.sol

Opt.sol 100 . In cases
where optimal solution is not known in advance, gap is calculated in respect
to best found solution Best.sol: gapi = soli−Best.sol

Best.sol 100 . Tables also con-
tain standard deviation of the gap (denoted as σ) and it is calculated on the

following way: σ = 1
20

√
20∑

i=1

(gapi − avg.gap)2.

Column Hubs gives information about established hubs. Column HM-
SAP Enu contains information about obtained exact solution of the sub-
problem when hubs are fixed and next column contains time that enumera-
tion algorithm spent in order to obtain solution. Columns Topcu. and Chen.
contain Topcuoglu’s and Cheng’s results.

If there is abbreviation ”n.t.” in table cell, it means that problem instance
is not tested. Abbreviation ”n.n” means that solving was not necessary - for
instance if there is only one established hub, assignment is trivial and it is not
necessary to solve HMSAP problem. Abbreviation ”n.f” means that algorithm
did not finished its work, and ”time” indicates that execution lasted more
than one day.

All the cells in Table 1, where differences are so significant that can not be
easily explained only by accumulation of rounding error, are bolded. There
is also some chance that those differences are generated by some differences
in downloaded AP problem instances, or by inadequate aggregation.

Papers [7, 11] present results only for AP instances with χ = 3, α = 0.75
and δ = 2, so Table 1 contains data for direct comparison among proposed
GA, Topcuoglu’s algorithm and Cheng’s algorithm. Results of proposed GA
and HMSAP Enu algorithm on AP instances with different values for χ, α
and δ can be downloaded from address http://www.matf.bg.ac.yu/
∼vladaf/Science/USAHLP/ap.txt .

Data in Table 1 indicate that, whenever exact enumeration algorithm ob-
tain the solution, proposed GA also obtained the same solution. In some
cases, for example 120T instance, when number of established hubs is small,
HMSAP Enu finishes its work quicker than GA, but HMSAP Enu solves
only subproblem with fixed established hubs. Furthermore, we can notice
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Table 1 Results for comparison GA and HMSAP Enu on AP instances with χ = 3,
α = 0.75, δ = 2

Inst. GA.best t[s] ttot[s] gen avg.gap[%] σ[%] Hubs HMSAP Enu t[s] Topcu. Chen.

10L 224250.055 0.009 0.101 217 0.000 0.000 3,4,7 224250.055 0.04 224249.82 224250.06

10T 263399.943 0.020 0.113 249 0.000 0.000 4,5,10 263399.943 0.07 263402.13 263399.95

20L 234690.963 0.016 0.206 216 0.000 0.000 7,14 234690.963 0.11 234690.11 234690.96

20T 271128.176 0.029 0.213 229 0.909 1.271 7,19 271128.176 0.11 263402.13 271128.18

25L 236650.627 0.035 0.275 228 0.000 0.000 8,18 236650.627 0.20 236649.69 236650.63

25T 295667.835 0.004 0.233 201 0.000 0.000 13 n.t. n.n. 295670.39 295667.84

40L 240986.233 0.101 0.554 244 0.221 0.235 14,28 240986.233 1.90 240985.51 240986.24

40T 293164.836 0.069 0.500 231 0.000 0.000 19 n.t. n.n. 293163.38 293164.83

50L 237421.992 0.298 0.904 298 0.327 0.813 15,36 237421.992 4.16 237420.69 237421.99

50T 300420.993 0.008 0.592 201 0.000 0.000 24 n.t. n.n. 300420.87 300420.98

60L 228007.900 0.415 1.205 306 0.546 0.919 18,41 228007.900 7.93 n.t. n.t.

60T 246285.034 0.231 1.016 258 0.356 1.593 19,41 246285.034 7.54 n.t. n.t.

70L 233154.289 0.451 1.489 286 0.000 0.000 19,52 233154.289 9.84 n.t. n.t.

70T 252882.633 0.360 1.397 269 0.000 0.000 19,52 252882.633 9.88 n.t. n.t.

80L 229240.373 1.143 2.397 383 1.143 1.286 22,55 229240.373 21.34 n.t. n.t.

80T 274921.572 0.633 1.818 300 0.249 0.765 5,41,52 274921.572 4455 n.t. n.t.

90L 231236.235 0.919 2.463 319 0.841 0.865 26,82 231236.235 87.23 n.t. n.t.

90T 280755.459 0.437 1.934 257 0.133 0.395 5,41 280755.459 16.64 n.t. n.t.

100L 238016.277 1.382 3.221 349 0.381 0.757 29,73 238016.277 69.69 238017.53 238015.38

100T 305097.949 0.365 2.180 239 0.000 0.000 52 n.t. n.n. 305101.07 305096.76

110L 222704.770 3.025 5.205 478 1.430 1.611 32,77 222704.770 7 045 n.t. n.t.

110T 227934.627 2.604 4.761 438 4.846 5.774 32,77 227934.627 6 718 n.t. n.t.

120L 225801.362 2.304 4.775 384 0.392 0.778 32,85 225801.362 2 896 n.t. n.t.

120T 232460.818 3.440 5.913 475 1.741 2.972 32,85 232460.818 2 934 n.t. n.t.

130L 227884.626 3.563 6.661 428 1.098 1.037 36,88 n.f. time n.t. n.t.

130T 234935.968 3.108 6.181 399 0.398 0.459 36,88 n.f. time n.t. n.t.

200L 233802.976 11.521 19.630 482 0.398 0.815 43,148 n.f. time 228944.77 228944.18

200T 272188.113 10.981 19.221 463 0.326 0.215 54,122 n.f. time 233537.93 233537.33

four cases where execution of enumeration algorithm lasted extremely long,
but GA implementation obtained solution during very small amount of time.

GA implementation is also comparable in terms of running time with
Topcuoglu and Chen methods. Note that running time of the GA increases
at smaller rate than in [7, 11]. For example, for n=200, GA running time is
approximately 20 seconds, while Topcuogly is 3000 seconds and Chen is 180
seconds.

6 Conclusions

In this article, we introduced a GA-inspired heuristic that solves the US-
AHLP by simultaneously finding the number of hubs, the location of hubs,
and the assignment of nodes to the hubs. The assignment part (HMSAP) is
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successfully verified by the results of enumeration method for all cases where
exact HMSAP solution can be obtained in reasonable time.

In proposed method, two-part encoding of individuals and appropriate
objective functions are used. Arranging located hubs in non-decreasing order
of their distances from each non-hub node directs GA to promising search
regions. We have used the idea of frozen bits to increase the diversity of
genetic material by mutation. The caching technique additionally improves
the computational performance of GA.

Extensive computational experiments indicate that the proposed method
is very powerful and that the medium-size and large-size USAHLP instances
can be solved within a twenty seconds of computing time for sizes attaining
200 nodes. Such results imply that the GA may provide an efficient meta-
heuristic for real world USAHLP and related problems.

Hence, our future work could also concentrate on the speed-up of the algo-
rithm by taking advantage of parallel computation and on GA hybridization
with exact methods.
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