
Two Hybrid Genetic Algorithms for
Solving the Super-peer Selection
Problem
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Abstract The problem that we will address here is the Super-Peer Selec-
tion Problem (SPSP). Two hybrid genetic algorithm (HGA) approaches are
proposed for solving this NP-hard problem. The new encoding schemes are
implemented with appropriate objective functions. Both approaches keep the
feasibility of individuals by using specific representation and modified genetic
operators. The numerical experiments were carried out on the standard data
set known from the literature. The results of this test show that in 6 out of
12 cases HGAs outreached best known solutions so far, and that our methods
are competitive with other heuristics.

Keywords: Genetic algorithms, Evolutionary computation, Peer-to-peer
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1 Introduction

During the past 20 years, computer networks have been rapidly expanding
because of users’ need to connect to other computers via local or global
computer networks. Some network strategies are based on client/server ar-
chitecture, while the others are Peer-to-Peer (P2P) systems. P2P networks
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are fully decentralized and the advantages of this approach are self-organizing
and fault-tolerant behavior. Failure in a single node usually does not affect
the entire network at once. However, excessive growth of network commu-
nication may affect the scalability of such networks. Namely, in the case of
larger networks, communication times tend to increase and the load put on
every node grows significantly. This problem can be solved by the introduc-
tion of super-peers. Super-peers are peers that act as servers for a number of
attached common peers, while at the same time, forming a network of nodes
equal among themselves. In this super-peer P2P network, each common peer
is assigned to exactly one super-peer, which represents its only link to the
rest of the network. Obviously, all communications between different peers
must be routed via at least one super-peer. The presentation of all relevant
information about Peer-to-Peer networks is out of the scope of this paper and
details can be found in [6, 14].

Although there are many papers about P2P networks, we have found only
two papers that deal with the selection of super-peers in order to minimize
overall network communication. One of the papers [12] proves that the Super-
Peer Selection Problem (SPSP) is NP-hard. The other paper [13]] suggests
a solution to this problem. A new metaheuristic based on evolutionary tech-
niques combined with local search is presented. The proposed metaheuristic
is tested on real-world instances based on actual internet distance measure-
ments. Significant savings in total communication costs are demonstrated for
all instances in contrast to a case without super-peer topology.

2 Mathematical Representation

We used an integer programming representation of SPSP similar to the one
in [13]. Since the number of nodes assigned to a super-peer network is limited,
we incorporated this into the model. We defined n as the number of nodes,
p as the number of super-peer nodes, and dij as the distance between nodes
i and j. Let xij ∈ {0, 1} have the value 1 if node i is allocated to a super-
peer j and 0 otherwise. The condition xkk = 1 implies that the node k is a
super-peer.

The problem can be expressed thus:

min

n∑

i=1

n∑

j=1,j 6=i

n∑

k=1

n∑

l=1

(dik + dkl + dlj)xikxjl (1)

subject to:

n∑

k=1

xkk = p (2)



Two hybrid genetic algorithms for solving SPSP 3

n∑

k=1

xik = 1 ∀i = 1, ..., n (3)

p

2
· xkk ≤

n∑

i=1

xik ≤ 2p · xkk ∀k = 1, ..., n (4)

xik ∈ {0, 1} ∀i, k = 1, ..., n (5)

The objective function (1) minimizes the overall costs. The constraint (2)
ensures that exactly p super-peers are chosen, while the constraint (3) guar-
antees a single super-peer allocation for each node. The constraint (4) limits
the number of nodes assigned to each super-peer k to between p/2 and 2p.
The constraint (4) implies also that if k is a non-super-peer node (xkk = 0),
then xik = 0 holds for every i . It is easy to see that the flow goes only via
super-peer nodes, thus preventing direct transmission between other nodes.
By the constraint (5) we prevent super-peers being allocated to other nodes.

3 Proposed Hybrid GA Methods

GAs are stochastic search techniques imitating some spontaneous optimiza-
tion processes in the natural selection and reproduction. At each iteration
(generation), a GA manipulates a set (population) of encoded solutions (in-
dividuals), starting from either randomly or heuristically generated one. In-
dividuals from a current population are evaluated using a fitness function
to determine their qualities. Good individuals are selected to produce new
ones (offspring), applying operators inspired from genetics (crossover and
mutation), and they replace some of the individuals from the current popu-
lation. A detailed description of GAs is out of this paper’s scope and can be
found in [9, 8, 10]. Extensive computational experience of various optimiza-
tion problems shows that a GA often produces high quality solutions within
a reasonable time. Some of the recent applications related to this problem
are [4, 5, 11, 7].

3.1 Description of HGA1 Representation

The genetic code of each individual consists of n genes, each referring to one
network node. The first bit in each gene takes the value 1 if the current node
is a super-peer, 0 if it is not. Considering these bit values, we form an array
of opened super-peers. If a node is a super-peer the remaining bits of the
gene are ignored, while if it is not a super-peer node, the remaining part of
the gene rnsp refers to the super-peer assigned to the current non-super-peer
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node nsp. Details of this assignment will be explained later as the nearest
neighbour ordering.

3.2 Description of HGA2 Representation

In this representation of the GA, the genetic code of an individual consists
of two segments. The first segment is a string of length p, where the digits
(genes) take values from the set {0, 1, ..., n − 1}. Each digit in this segment
shows which nodes are set as super-peers. The duplication of a super-peer
index is resolved in the following way: if an index repeats in a genetic code,
we replace it by the next previously unused one. If there are no such indices,
we use the previous index that was not already taken. Since p is smaller
than n, we will always find a ”free” index to replace the duplicated one. This
approach ensures that exactly p distinct super-peer indices are obtained from
a genetic code.

The second segment in the genetic code has exactly n−p genes, where each
gene rnsp corresponds to the non-super-peer node nsp. The gene value refers
to the super-peer assigned to the current node, also applying the nearest
neighbor ordering.

3.3 Objective Function

For each non-super-peer node nsp the nearest neighbor ordering is applied
in several steps:

Step 1 super-peers that reached 2p assignments are discarded from consid-
eration;

Step 2 the remaining super-peers are arranged in non-decreasing order of
their distances from a particular node;

Step 3 the super-peer with the index rnsp in the arranged order is assigned
for the current non-super-peer node nsp.

This procedure guarantees that every super-peer node has at most 2p node
assignments. If some super-peers have less than p/2 node assignments, we look
for nodes that are assigned to super-peers with more than p/2 assignments
and choose the one with the best change of overall cost. This is repeated until
all super-peers have at least p/2 node assignments.

The super-peers that are closer to non-super-peer nodes appear often in
the optimal solution, while the far away super-peers are rare. For this reason,
we directed our search to ”closer” super-peers, while the ”distant” ones were
considered of small probability. As a result, the values of rnsp had to be
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relatively small, otherwise the nearest neighbor ordering would become a
classical GA search. If all rnsp = 0, this would turn into a greedy search.

On this solution, we applied local search procedures as proposed in [13].
There were three different neighborhoods: replacing the super-peer, swapping
two peers and reassigning a peer to another super-peer. Since their running
times were very time consuming, we used these local search procedures oc-
casionally, in contrast to [13], where all three procedures were used on each
individual in every generation. In the first 20 generations, we did not use the
local search at all. Later, if the best individual was changed, we improved
it, but if the best individual was not changed in the last 5 generations, we
randomly chose some individual and applied all three local search procedures
to it.

3.4 Selection

The selection operator, which chooses parent individuals for producing off-
spring in the next generation, is an improved tournament selection operator
known as the fine-grained tournament selection (see [2]). This operator uses
a real (rational) parameter Ftour denoting the desired average tournament
size. Two types of tournament were performed: the first type was held k1

times on bFtourc individuals, while the second type was applied k2 times
with dFtoure individuals participating, so Ftour ≈ k1·bFtourc+k2·dFtoure

Nnnel
, where

Npop and Nelite was the overall number of individuals and number of elitist
individuals in the population, and Nnnel = Npop −Nelite.

In our implementation Ftour = 5.4 and, corresponding values k1 and k2

for Nnnel = 50 non-elitist individuals were 30 and 20, respectively.

3.5 Crossover and Mutation

After a pair of parents was selected, the crossover operator was applied to
them producing two offspring. The crossover operator in HGA1 simultane-
ously traced genetic codes of the parents from right to left, searching the gene
position i where the parent1 had ”1-bit” and the parent2, ”0-bit” on the first
bit position of these genes. The individuals then exchanged whole genes on
the gene position i. The corresponding process was simultaneously performed
on gene position j, starting from the left side of the parents’ genetic codes.
The described process was repeated until j ≥ i.

Note that the number of located super-peers in both offspring remained
unchanged compared to their parents. Since the parents were correct, their
offspring were correct, too. The implemented crossover operator was applied
with the rate (pcross = 0.85).
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In HGA2 each parent’s genetic code consisted of two segments of different
nature. We applied a double one-point crossover: in each segment of the
parents’ genetic codes, one crossover point was randomly chosen and the
genes were exchanged after the chosen position.

The offspring generated by a crossover operator were subject to mutation.
The mutation operator, when applied, changed a randomly selected gene in
the genetic code. During the GA execution, it is possible that all individuals
in the population have the same gene in a certain position. These genes are
called frozen. If the number of frozen genes is significant, the search space
becomes much smaller, and the possibility of premature convergence rapidly
increases. For this reason, basic mutation rates are increased, but only for
the frozen genes. The basic mutation rates are:

• 0.2/n for the bit in the first position.
• 0.05/n for the bit in the second position. Next bits in the gene have re-

peatedly two times smaller mutation rate (0.025/n, ....).

When compared to the basic mutation rates, frozen bits are mutated by:

• 2.5 times higher rate (0.5/n instead of 0.2/n) if they are in the first position
in the gene.

• 1.5 times higher rate (0.075/n, 0.0375/n, ...) otherwise.

In HGA1, the previous process could not guarantee the feasibility of indi-
viduals, so we counted and compared the number of mutated ones and zeros
in the first bits of genes in each individual. In cases where these numbers were
not equal, it was necessary to mutate additional leading bits of genes. Equal-
izing the number of mutated ones and zeros in leading positions, the mutation
operator preserved exactly p super-peers and preserved the feasibility of the
mutated individuals.

3.6 Caching GA

The main purpose of caching was to avoid the calculation of objective values
for individuals that reappeared during the a GA run. The evaluated objec-
tive values were stored in a hash-queue data structure, which was created
using the Least Recently Used (LRU) caching strategy. When the same code
was obtained again, its objective value was taken from the hash-queue ta-
ble, instead of calculating its objective function. The implemented caching
technique improved the GA running time (see [3]). The number of cached
objective values in the hash-queue table was limited to Ncache = 5000 in our
HGA implementations.
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3.7 Other GA Aspects

The population numbered 150 individuals, but for the applied encodings,
random population in the first generation was not appropriate. These en-
codings, based on the nearest neighbor ordering, as described above, showed
that numbers rnsp must be small. If pri, i = 0, ..., p − 1 is the probabil-

ity that rnsp = i, for every non-super-peer node must hold
p−1∑
i=1

pri = 1 and

pr0 ≥ pr1 ≥ ... ≥ prp−1. The appropriate model was the geometric progres-
sion for pr0 = 1−q

1−qp , where q was the common ratio. In our case, q was 0.4.
The initial population was generated according to these probabilities.

Steady-state generations were replaced by applying elitist strategy. In this
replacement scheme, only Nnonel = 50 individuals were replaced in every
generation, while the best Nelite = 100 individuals directly passed into the
next generation preserving highly fitted genes. The elite individuals did not
need recalculation of objective values, since each of them was evaluated in
one of the previous generations.

Duplicated individuals were removed from each generation. Their fitness
values were set to zero, so that the selection operator prevented them from
entering the next generation. This was a highly effective method of preserving
the diversity of genetic material and keeping the algorithm away from prema-
ture convergence. Individuals with the same objective function but different
genetic codes can in some cases dominate the population. If their codes are
similar, the GA can lead to a local optimum. For that reason, it is useful to
limit their appearance to some constant. In this GA application this constant
was set to 40.

4 Computational Results

The GA tests were performed on an Intel 2.66 GHz with 4 GB RAM, un-
der Linux (Knoppix 5.3.1) operating system. The GA stopping criterion was
the maximum number of generations equal to 5,000 or at most 2,000 gener-
ations without an improvement of the objective value. Testing of both HGA
approaches was performed on real world instances from [13] based on node-
to-node delay information from PlanetLab [1], a world-wide platform for per-
forming Internet measurements. The dimension of these instances varied from
n = 70 to n = 419 nodes and p ≈

√
(n). Note that for these instances trian-

gle inequalities are frequently violated due to different routing policies and
missing links most likely due to firewalls (for more details see [1, 13]).

Table 1 contains current best known solutions, based on results from [13]
and new results from HGA1 and HGA. The table is organized as follows:

• the first column contains the instance name;
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Table 1 Characteristic of SPSP instances

Inst n p Best known
solution

01-2005 127 12 2927946 new
02-2005 321 19 18596988 new
03-2005 324 18 20642064 new
04-2005 70 9 739954
05-2005 374 20 25717036
06-2005 365 20 22311442 new
07-2005 380 20 31042374 new
08-2005 402 21 30965218
09-2005 419 21 33014358 new
10-2005 414 21 32922594
11-2005 407 21 27902552
12-2005 414 21 28516682

• in the second and the third columns are the number of nodes, n, and the
number of super-peers, p, respectively;

• current best known solutions are given in the last column. Solutions
achieved by HGAs are marked with new.

Table 2 Results of the HGA1

Inst Bestsol GAbest t ttot gen agap σ eval cache
(sec) (sec) (%) (%) (%)

01-2005 2927946 best 50.8 73.7 4675 0.126 0.287 128152 45.2
02-2005 18596988 18621460 495.7 660.6 4642 0.417 0.283 146473 37.0
03-2005 20642064 20650488 590.4 730.7 4785 1.733 0.757 137183 42.6
04-2005 739954 best 7.5 13.2 3851 0.609 1.480 89222 53.1
05-2005 25717036 25727144 929.7 1098.1 4875 0.285 0.328 148494 39.1
06-2005 22311442 best 605.0 854.8 4527 0.175 0.125 132700 41.4
07-2005 31042374 31082632 784.4 992.6 4840 0.332 0.237 136918 43.4
08-2005 30965218 30971996 902.5 1145.0 4793 0.634 0.292 154109 35.7
09-2005 33014358 best 924.1 1233.8 4653 0.917 0.441 152024 34.8
10-2005 32922594 32966074 1017.5 1237.6 4778 0.820 0.520 154744 35.1
11-2005 27902552 27942502 909.7 1198.1 4783 1.208 0.662 160861 32.9
12-2005 28516682 28561004 1009.7 1300.8 4849 0.564 0.371 152419 37.2

The HGA1 and HGA2 were run 30 times for each instance and the results
were summarized in Tables 2 and 3, respectively. The tables are organized as
follows:

• the first two columns contain the instance name and the best known solu-
tion from Table 1;

• the third column, named GAbest, contains the best HGA solutions. The
solutions that are equal to the best known are marked best;
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• the average running time (t) used to reach the final GA solution for the
first time is given in the fourth column, while the fifth and sixth columns
(ttot and gen) show the average total running time and the average number
of generations for finishing GA, respectively. Note that running time ttot

includes t;
• the seventh and eighth columns (agap and σ) contain information on

average solution quality: agap is a percentage gap defined as agap =
1
20

20∑
i=1

gapi, where gapi = 100 ∗ GAi−Bestsol

Bestsol
and GAi represents the GA

solution obtained in the i-th run, while σ is the standard deviation of gapi,

i = 1, 2, ..., 20, obtained by formula σ =

√
1
20

20∑
i=1

(gapi − agap)2.

• in the last two columns, eval represents the average number of objec-
tive function evaluations, while cache displays savings (in percentages)
achieved by using the caching technique.

Table 3 Results of the HGA2

Inst Bestsol GAbest t ttot gen agap σ eval cache
(sec) (sec) (%) (%) (%)

01-2005 2927946 best 31.0 52.9 4111 1.386 0.310 88090 57.1
02-2005 18596988 best 478.9 597.4 4784 0.457 0.202 106383 55.5
03-2005 20642064 best 553.3 675.6 4821 1.437 1.023 107753 55.3
04-2005 739954 best 3.6 10.1 2984 0.246 0.068 76212 49.1
05-2005 25717036 25722412 762.0 942.9 4773 1.669 0.546 108867 54.5
06-2005 22311442 22326972 657.3 822.0 4865 0.385 0.232 106119 56.3
07-2005 31042374 best 716.0 885.1 4810 4.955 0.995 104526 56.6
08-2005 30965218 31050464 856.9 1053.2 4763 0.542 0.280 111634 53.2
09-2005 33014358 33188802 927.1 1094.5 4783 0.834 0.351 105898 55.7
10-2005 32922594 33054968 959.7 1121.7 4921 1.257 0.444 109063 55.7
11-2005 27902552 27956910 874.0 1042.9 4795 1.707 0.707 113642 52.4
12-2005 28516682 28536494 1014.1 1191.7 4916 0.441 0.269 106272 56.7

5 Conclusions

We have described two evolutionary metaheuristics for solving SPSP. For
each method, two-segment encoding of individuals and appropriate objective
functions were used. Arranging super-peers in non-decreasing order of their
distances from each node directed GA to promising search regions. The initial
population was generated to be feasible and genetic operators adapted to
SPSP were designed and implemented. Improving heuristic based on local
search additionally improved solutions given by genetic algorithms. Genetic



10 J. Kratica et al.

operators preserved the feasibility of solutions, so the incorrect individuals
did not appear throughout all generations. We have used the idea of frozen
bits to increase the diversity of the genetic material. The caching technique
additionally improved the computational performance of both HGAs.

The results clearly demonstrated usefulness of our hybrid GA approaches
with new best solutions for six of the SPSP instances. Hence, our future work
could concentrate on the parallelization of the HGAs and their hybridization
with exact methods. Based on the results, we believe that our HGA ap-
proaches have a potential as useful metaheuristics for solving other similar
problems that arise in Peer-to-Peer network communications.
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