XIV INTERNATIONAL CONFERENCE ON MATERIAL HANDLING AND WAREHOUSING
University of Belgrade, Faculty of Mechanical Engineering, Materials Handling Institute; 11.-12. Dec. 1996,

Solving of the uncapacitated warehouse location problem using a simple genetic
algorithm

Jozef Kratica', Vladimir Filipovi¢?, Vesna Se$um'® and Dugan Togi¢?

Abstract

The uncapacitated warehouse location
problem is considered. Since it belongs to
the class of NP complete problems, we use
the genetic algorithms in the solving of this
problem. Genetic algorithms are rooted in
the mechanisms of the evolution and
natural selection. They are relatively
general and practicale way for the finding a
suboptimal solution (heuristic) in the
problems of optimization.

"According to the uncapacitated ware-
house location problem, we should find
provision plan with minimal total cost. The
storage cost lor every warehouse and the
cost of shipment from every warehouse to
an arbitrary customer are known.

We use simple genetic algorithm for the
solving of uncapacitated warehouse location
problem.. The item-code is represented by
the binary array of indicators denoting the
inclusion of warehouse into provision plan.
-~ This approach seems to be a good
compromise between the quality of solution
and execution time. The improvements are
possible by introducing of other selection
and crossover operators.

Keywords: Uncapacitated warehouse
problem, NP complete problems, Genetic
algorithms

1. Introduction

1.1. The uncapacitated warehouse
problem

Suppose that there are n warehouses and
m clients. Let ¢; (1 <1< n) be a storage cost
of merchandise in a warehouse i, and h; (1=
1<n,1<j<m)a cost of shipment from a
warehouse 1 to client j. We should find the
warehouses included into the provision plan
and the way of shipment from these
warehouses to clients. The problem is to
find a provision plan that has a minimal
total cost (the sum of storage cost and cost
of shipment). (See: [2],[3] and [4]).

Denote with x; (x; € {0,1),i=1, ..., n) i- .
th element of binary array indicating that
the warehouse i is included, or not, into the
provision plan. Let y; be the quantity of
shipment from the warehouse i to the
customer j. It is necessary to tind:

mln [i Cixi + i i hi_]yij)
=1 =1 j=1 o

according to the following conditions:
2y, =1, forj=1,2 .. m;

Ve & % for 1=

Vi < 5w I
and j =

5 Tk

2
BB

?

This problem belongs to the class of NP
complete problems and its optimal solution
could be obtained only by the algorithms
with exponential execution time. These
algorithms are convenient only for the small
values of m and n (m,n < 20), but they are
inefficient, and practically useless, for the
greater values of m and n.

' Katedra za Matematiku, Maginski Fakultet u Beogradu, 27. marta 80, 11000 Beograd
* Matematicki fakultet u Beogradu, Studentski trg 16, 11000 Beograd

5.33

So, to solve the uncapacitated warehouse
problem for larger values of m and n (m,n >
20), it is necessary to use suboptimal,
heuristic algorithms. Some of these
algorithms are described in [3], [4] and [8].

1.2. Genetic algorithms

Genetic algorithms (developed in the
sixties) are direct, random search algorithms
based on the model of biological evolution
([11, [6]). Consequently, the terminology
used in genetic algorithm is borrowed from
the natural genetic. These algorithms rely
on the collective learning process within a
population of individuals. Each of the
individual represents a search point in the
space of potential solutions of a given
optimization problem. The population
gvoives towards increasingly better regions
of the search space by means of randomized
processes of selection, mutation and
recombination (crossover). The selection
mechanism favors Individuals of better
objective function value to reproduce more
often than worse ones when a new
population is formed. The recombination
allows the mixing of parental information
when this pass to their descendants, and
mutation introduces innovation into the
population. Usually, the initial population is
randomly initialized and evolution process
1s stopped after predefined number of

- tterations. For more detailed explanations
-see [1], [6], [9] and {10].

2. The way of solution by genetic
algorithms

2.1. Coding

To solve the given problem, it is natural

to use the binary coding. Every bit in the
item-genetic code with the value 1, denotes
a specific warchouse included into the
provision plan, and O denotes that it is not
included.
Example I. For n=5, genetic code 01011
denotes that warehouses 2, 4 and 5 are
included into provision plan, and 1 and 3
are not.

In our implementation of the genectic
algorithm an item-genetic code is divided in
32-bit words (unsigned long integers), but
we do not use all bits in the last word. As we
can see in the example 1, for n=5 every item
has a genetic code represented by a 32-bit
word, but the bits 0-4 are only used (this is
the simple case where only one word is
used, because n < 32), while bits 5-32 have
not any function.

By using genetic code we obtain an array
{x;} (i=1, 2, .. , n) indicating the warchouses
included in the provision plan. After that,
the following procedure is used.

Since the quantity of merchandise
delivered i{rom arbitrary warchouse is not
limited, if ail of clients choose minimal cost
of shipments, the whole cost is minimal. In
the choosing procedure for a specific client,
only warehouses included in the provision
plan (x,=1) are considered.

That fact implies minimization only in
the warehouse choosing procedure. If the
warehouse choosing procedure is fixed, the
minimal total cost is obtained easily,
because the shipment is done from the most
favorable warehouse for the client.
Example 2: Suppose that we have five
warchouses with the storage costs,
successively, 5, 2, 7, 3, 4; and three clients.
Let the transport cost matrix is:

1 % 0.8 2 1.6
2 1.7 i 1.5 1.3
1.5 13 2 1.5 1

If warehouses 2, 4 and 5 are included in
the provision plan, as in example 1, the
storage cost 1s 2 + 3 + 4 = 9. The minimal
transport costs for clients are, successively:
1.5 (minimum from 1.5, 2 and 1.6), 1.3
(minimum from 1.7, 1.5 and 1.3) and 1
(minimum from 1.3, 1.5 and 1). The total
cost of that supplying plan is 9+1.5+1.3+1 =
12.8. The obtained cost is minimal for this
choose of warehouses, but it is not an
optimal supplying plan.

The optimal supplying plan in example 2
is-obtained only if the warehouse 2, with the
storage costs 2, 1s included. The transport
costs are, successively, 1.5, 1.7 and 1.3. The
total cost of that plan is 2+41.5+1.7+1.3 = 6.5.

3.34

2.2. Genetic algorithm parameters

We test our program for the solution of
uncapacitated warehouse problem on the
population of 20 items, and the maximal
number of generations 1000.

We used simple genetic algorithm:
simple selection, one-point crossover and
simple mutation. As it is a minimization
problem, the fitness of every item is
reversed to its objective value. Formula for
that scaling into the interval (0,1) is

(max-p)/(max-min)
where max and min are maximal and
minimal item objective values in current
generation, and p is a particular item
objective value.

In the simple selection, chances for
passing of given item into next generation,
are directly proportional to its fitness. The
best items are frequently passed into the
next generation.

The choosing a pair of items in the one-
point crossover is random. After that, for
given items, we choose the crossover
position and exchange bits behind that
position. In our implementation crossover
rate 1s 0.85. This represents a ratio of the
crossover item’s npumber, and the
population size. The mutation rate is 0.005
for the large instances (A - C), and 0.01 for
the small instances (71 - 134). For the small
instances number of bits in item genetic
code 1s smaller, and mutation rate of 0.005 is
not enough to prevent premature converge-
nce. For more detailed explanations about
simple genetic algorithm see [1], [6], [9] and
[10].

The only change in our implementation
of the simple genetic algorithm is: best item
in the current generation passes directly to
the next generation without select,
crossover and mutation.

3. Results

The described genetic algorithm is
written in the programming language C.
The testing is done by using the PC
compatible computer 180486 at 133Mhz.

Test examples are standard for testing
the solution obtained by genetic algorithm.
They can be found on the Internet FTP
address: mscmga.msdcacuk (Www
address is: Atip:/mscmga.ms.ic.ac.uk/). For
more detailed explanations about these test
examples, for uncapacitated and capacitated
warehouse problem, see [2] and [3].

Since genetic operators of selection.
crossover and mutation are undeterministic,
cvery test example has to run multiple
times. We have tested it 20 times. Results
are given in the table 1.

Test N M Opt. <02 <1% <3% >5%
71 16 30 19 0 0 1 0
72 16 30 20 0 0 0 0
73 16 30 18 2 0 0 0
74 16 50 20 0 0 0 0
101 25 50 16 0 4 0 0
102 25 30 20 0 0 0 0
103 25 50 9 0 10 1 0
104 25 50 20 0 0 0 0
131 50 50 9 0 7 4 0
132 50 50 17 1 1 1 0
133 30 30 7 2 7 4 0
134 50 50 13 0 2 0 3
A 100 1000 1 1 0 S 10
B 100 1000 3 2 0 13 0
C 100 10cO 1 1 2 18 0
Table 1.

The first column in the table 1.
represents the ordinal number of that test in
{2] and [3]. The next two columns represent
dimensions of the problem (N and M). The
columns 4, 5, 6,7 and 8 are, successively:

- the number of the obtained optimal
solution,

- the number of solution with the error
less than 0.2% from optimal solution,

- the number of solution with error from
optimal solution was between 0.2% and 1%,

- the number of solution with the error
between 1% and 5% in comparison to the
optimal solution,

- the number of solution with the error
greater than 5% from optimal solution.

Note that at examples for N=16 (M=50)
and N=25 (M=50), in almost every case,
program obtains optimal solution. At
examples for N=50 (M=50), in about half

3.35

and more cases, we obtain optimal solution.
At examples with large values for N and M
(N=100, M=1000) only in a few cases the
optimal solution is obtained.

The execution time in examples with the
small values of M and N (test examples 71 -
134) was about 10 seconds, while for large
values of M and N (test examples A - C)it
was about 3 minutes.

4. Conclusion

This is the first implementation of
genetic algorithms for solving the
uncapacitated warehouse location problem.
The binary coding of warehouse, included in
the provision plan, is especially good
combination with nature of genetic
algorithms. That fact later contributes to
successful use of genetic operators:
selection, crossover and mutation,

The main advantage of this impleme-
ntation is relatively short execution time. It
is also valid for the examples with large
values of M and N, where the other
algorithms {([3], [4], [8]) usually do not give
good solution or have very large execution
time.

In our implementation the search space
size, for examples 77-74 is 2'°=65536, for
examples J01-104 is 2%=3.3*%107, for
cxamples 737-134 is 2°=10", and in
cxamples with large values (A-C) it is even
2™=10". Using this implementation for
1000 generations by 20 items (20 000 calls to
objective function) we get the optimal
solution at least once in all test examples.
Note that in large examples we search about
10™ of search space size.

The improvement of this implementa-
lion is possible by applying some others
genetic operators for selection, crossover
and mutation, described in [1], [6], [9] and
[10].

Further improvements could be obtained
by combining this method with some other
methods for solving given problem (see: [2],
(3], [4] and [8]), Also we can use some
hybrid techniques mentioned in [7].

The approach applied to the uncapa-
citated warehouse problem could be applied

in solving of capacitated warehouse location
problem, too. Of course some modifications
of our impementation are necessary.

The numerous C-functions from this

“implementation could be used for solving

the other NP-complete problems.
5. References

(1] Beasley, D., Bull, D.R., Martin, R.R.. An
Overview of Genetic Algorithms,
University Computing 15 (4), pp 170-181,
1993,

[2] Beasley, JE., An algorithm for solving
large capacitated warehouse location
problems, European Journal of Operational
Research, volume 33 (3), pp 314-325,
1988.

[3] Beasley, J.E., Lagrangean heuristic for
location problems, European Journal of
Operational Research, volume 65 (3), pp
383-399, 1993.

(4] Brandeau, M.L., Chiu, S.5.. An overview
of representative problems in location
search, Management Science, volume 35
(6), pp 645-674, 1989, '

(5] De Jong, KE., Spears, WM, Using
Genetic Algorithms to Solve NP-
Complete Problems, Proceedings of the
Third International Conference on Genetic
Algorithms, pp 124-132, 1989.

(6] Goldberg, D.E., Genetic Algorithms in
Search, Optimization and Machine
Leraning, Addison-Wesley, Reading,
1989.

(7] Kido, T., Kitano, H., Nakanishi, M., A
Hybrid Search for Genetic Algorithms:
Combining Genetic Algorithms, TABU
Search, and Simulated Annealing,
Proceedings of the Fifth International
Conference on Genetic Algorithms, pp 641,
1903,

[8] Panneerselvam, R., Balasubramanian,
KN., Thiagarajan, M.T. Models for
warehouse location probiem, Interna-
tional Journal of Management and Systems,
volume 6 (1), pp 1-8, 1990.

[91 *Ribeiro-Filho, J.L., Treleaven, P.C.,
Alippi, C., Genetic-Algorithm Progra-
mming Environments, [EEE Computer,
June 1994, pp 28-43

3.36

[10] Srinivas, M., Patnaik, LM., Genetic
Algorithms: A Survey, IEEE Computer,
June 1994, pp 17-26

[11] Vignaux, G.A., Michalewicz, Z., A Genetic
Algorithm for the Linear Transportation
Problem, IEEE Transactions on Systems,
Man, and Cybernetics, volume 21 (2), pp
445-452, 1991.

337

	Paper.jpg
	Paper 001.jpg
	Paper 002.jpg
	Paper 003.jpg
	Paper 004.jpg

