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Abstract. The Geophysical inversion problem is described and methods to the solution of this
problem are mentioned. Some ways for parallelization of these methods are considered and a
parallel algorithm is implemented on transputer system. To apply this parallel algorithm a
special configuration of transputer system into hypercube parailel computer is made. The
whole program (for the cube-manager and nodes of the hypercube) is written in programming
language C for the transputers. Some test-examples for the measurement of the performances
of applied parallel algorithm are presented.
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1. Introduction

The problem of determining the characteristics of an underground region by using given
measurements data is known as Geophysical Inversion Problem. The tomographic methods are
often used in the solution of this problem. Those methods are based on the estimation of the P-
wave velocity within some region of space through which the rays have passed. The
distribution of velocity is used for characterizing the subsurface. We deal with the problem of
velocity estimation from first-arrival traveltimes in a two-dimensional cross-hole geometry.
The transmitters are located in one borehole, while receivers are in another borehole and
(possibly) on the surface. The rectangular plane between two boreholes is the examined cross-
hole region.
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Standard tomographic procedures are based on discretization of the cross-hole region (see
(1],[2).[13]). The rectangular between two boreholes is divided into a grid of cells and v(x,y) is
assumed to be constant over the area covered by any one ceil.

Traveltime is related to the velocity structure by the equation

”) 7 J ds
‘ Coa v )

where ¢, is the traveltime of the ith ray, ds is the differential raypath length of the /th ray, v(x,y)
s the two-dimensional velocity function and R, is the raypath trajectory of the ith ray.
(Reciprocal velocity value 1/v(x,y) is often named as slowness and denoted by ufx,y). Instead
of the velocity distribution, we will look for the slowness distribution in the cross-hole area.) If

the slowness area is discretized into N cells, then equation (1) can be approximated as:
N

(2) to= 2 dyu,

where d, is the length of the ith ray through the jth cell and % the unknown slowness in the jth
cell. It is assumed here that ¢, equals zero in the cells not traversed by the ith ray. If we have
M rays traveling through N cells, the traveltime equations can be written in matnx form as

(3) t = Du

where t is an Mx/ column vector of traveltimes, u is an Mx/ column vector of slowness and D
is an MxN matrix of segment lengths through the cells (see [2]).

2. Outline of the models and techniques

Two main models are used in the application of tomographic methods. These are: the linear
and curve-line nrodels. In the linear model the straight raypaths between two boreholes are
assumed, while in the curve-line model, the curve-line raypaths are assumed. The combinations
of these n®dels and their modifications are possible.

In bothof those cases the following problems arise:

1, Tht::’-jdatta_- T cannot be measured exactly and the proposed model is only an

appioximation. This causes (3) to be an inconsistent system. {[2], [3])
2. The solution of (3) is not unique in general. (It is possible that the number of equations in
(3) is: less, equal or greater than the number of unknowns.)

3. The matrix D in (3) is sparse and may often be tco large.

With Tegard to 1, 2 and 3, the direct matrix-inversion or pseudo-inversion 1s not convenient
for system (3) Because of that special iterative techniques are developed (see: [2] and [5]).
The general schemata in applying those techniques are as fellows. An initial estimation of
slowness #,, is made and the vector of traveltimes f.. is calculated by using (3). The
difference between the observed and calculated times #,s - feaic 15 redistributed back along each
raypath and the corrections of slowness are made by using some minimization criterion

([2],{3]. [5]). Rays are traced agaimn through the cross-hole region and the process is repeated.
[terative process can.be described by:
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(0< @ <2 - the relaxation parameter) and d(i) the ith row of the matrix D.

P.(u) =utw

There are many variations of these general techniques (see [21,[3D).

3. Parallelisation of used techniques

The process of Image reconstruction is often related to considerable computation. The
applying of parallel computers may be useful in this field. In [7] a parallel tomographic
algorithm based on the linear model is proposed. It is recognized later that the proposed
algorithm is independent of the used model. In this work we propose a modification of this
algorithm as a general parallel scheme for the iterative techniques applied to the solution of
large linear systems of equations and adopted for the transputer system.

Tnitially the algorithm in [7] was designed for Intel iPSC/1 hypercube parallel computers.
The hypercube computers consist of a host processor, 1.¢., the cube manager and large number
of identical processors (nodes) that work concurrently and each is provided with its own
memory. If an hypercube has 2" processors and each of them 1s interconnected with n
neighbors, it is an n-dimensional hypercube The communication between the concurrent
processes is realized by message passing. Each node in an hypercube has an operating system
kernel that provides: running processes within that node, sending and receiving messages and
routing the messages that flow through the node ([4], [6]) .

Moreover, the transputer system is without a strong architecture, but with a very flexible
one. It could be configured in different parallel architectures. To make a general hypercube
configuration (with a changeable number of nodes) the additional programming work is
necessary. By using additional functions we configured transputers into hypercube parallel
computer with maximum 8 nodes. The following configuration file for transputer system 1s
used:

1,tomo02 1,R0,0,2.3,5;
2,tomo02 2.R1, ,1,4,6;
3,tomo02 2,54, 4,17,
4 tomp02 2.82; ;3,2,8;

e ook

5.tomo02 2,81, .6,7.1;
6,tomo02_2.R8, ,5,8,2;
Trompl2 2.83, 8.5.3;

8.tomo02 2,57, ,1.64;
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In each line a transputer is defined by the following data: number of transputer, file name,
reset signal and the numbers of transputers linked with the defined transputer. The first
transputer has the role of cube-manager. -

Unfortunately, the structure of T-800 transputers (in fact, the adapter for the software
configuration of transputers) does not enable more nodes in a hypercube topology (see: [8] and
[S]). The functions related to the configuration of the system are incorporated into our
program. Qur program starts with the reading of the configuration and other data. After that
the computation related to the solution of linear system equations ts begun.

4. Pseudocode of program

Denote with p the maximum number of available nodes in a hypercube. According to the
concept of hypercube parallel computers we will describe the procedures (in fact, the
pseudocodes of procedures) for both the nodes and the cube manager. The same procedure 1s
used for all nodes, but a separate one for the cube manager.

Denote with T the number of transmitters and with R the number of receivers, The
following solution is for the case M = np = T*R (neN), where M is the total number of rays.
This case is acceptable for practical application.

Let us introduce the additional notation:

eps - the accuracy of slowness  and
max - maximal number of iterations.
A global design of our program is done by the following pseudocodes:

Node pseudocode

BEGIN
RECEIVE  all data from the cube manager
, including the configuration data
UPDATE "
SEND u" to cube manager.
END

Cube-manager pseudocode

BEGIN
READ Configuration of transputer system
WRITE Configuration of transputer system
READ

parameters of discretization

T, R, p. eps, max and .
SET k:=0: n'=T*R DIV p; u™” =ui,
REPEAT

> R AN R TR G 5T
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SET u®=0; y® = u®
FOR i=1TOnDO
FOR =1 TO p DO
SEND (to jth node)
parameters of discretization
data related to ({i-1)pt)th ray,
u(U)
FOR =1 TO p DO
RECEIVE (from jth node)
COMPUTE u™:=(u"+u®)/p
SHT w = o' KEkF
UNTIL [ju-u®)] < eps OR k>max
IF  |u™u®||<eps THEN print u®
ELSE print message.
END

5. Implementation and examples

The main step in this pseudocode is UPDATE u'®. In the parallelizing of the Geophysical
Inversion Problem this is the most complicated step and it depends on the method used for the
solution of linear system equations. During the testing of this program , the step UPDATE i
was very simplified: we increased all components of u® by one. (For the organization of the
parallel program the computation itself is not important because different norms could be
used.) With this simplification the program has been implemented on transputer hypercube by
using programming languages C. ;

Table 1

Dimension | Weight | Times (in sec) for | Times (in sec) for

| transputer 8 transputers
35 1 0.00819 0.04448
12 0.05606 0.09689
100 0.74016 0.14835
1000 8.00038 1.09945
400 1 0.09017 0.45958
40 361645 0.92089
100 8.28723 1.63002
1000 90122355 12.27577
2500 ] 0.56550 2.84141
100 56.53792 10.20633
1000 564.96403 7710771
4900 I 1. 12512 5.59065
. 100 103.63398 20.21971
140 157.20038 26.15200
701¢16 ) g ) 153.36377
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The performances of this impiementation are measured for different dimensions of the
problem (the number of equations) and for the different kinds of computations in nodes
(weight). The weight is the number of repetitions of increasing all components of u® by one.
(For example, if the weight is 100, then in each node of hypercube the component of u is
increased by one 100 times.) In all the test-examples T=6 and R=6, i.e. the number of
transmitters and receivers is constant. The characteristic results obtained for the 1 and 8
transputers are presented in the Table 1.

6. Conclusion

By analyzing the obtained results we conclude that the computation on & transputers may
take more time then computation on | transputer if the computation in node 1s not complex
(the first line in each row of the table). Moreover, if the computation in rode is complex, the
obtained results are very good. The best results are obtained if the number of equations in (3)
is large and the computation in node is complex. In this case (which is only interesting for
practices) the parallelizing of tomographic algorithms for the solution ot Geophysical Inversion
Prcblem s might be very successful.
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