
Fine Grained Tournament Selection for the
Simple Plant Location Problem

Vladimir Filipović1, Jozef Kratica2, Dušan Tošić1, and Ivana Ljubić3

1 University of Belgrade
Faculty of Mathematics

Studentski trg 16,. 11000 Belgrade
YUGOSLAVIA

{dtosic | vladaf}@matf.bg.ac.yu

2 Serbian Academy of Sciences and Arts
Mathematical Institute

Kneza Mihaila 35/I, 11001 Belgrade, p.p. 367
YUGOSLAVIA

jkratica@mi.sanu.ac.yu
URL: http://www.geocities.com/jkratica/

3 Vienna University of Technology

Institute for Computer Graphics
Favoritenstrasse 9 11/186, A-1040 Vienna

AUSTRIA
ljubic@apm.tuwien.ac.at

URL: http://www.apm.tuwien.ac.at/people/Ljubic.html

ABSTRACT

The simple plant location problem is considered and a
genetic algorithm is proposed to solve this problem. Ge-
netic algorithm that solves simple plant location problem
uses an improvement of tournament selection, called fine
grained tournament selection, as selection operator. New
operator is generalization of classical tournament selec-
tion, that keeps all good features of classical tournament
selection. By using the developed algorithm it is possible
to solve SPLP with more than 1000 facility sites and cus-
tomers. Computational results are presented and com-
pared to rank-based and classical tournament selection.

1. INTRODUCTION

Combinatorial optimization problems are important part
of the global optimization. One such problem is simple
plant location problem (SPLP). This problem is also
known as uncapacitated warehouse location problem or
uncapacitated facility location problem.

1.1. Problem Definition

Consider a set I = {1,...., m } of candidate sites for facility
location, and a set J = {1,...., n} of customers. Each facil-
ity i ∈ I has a fixed cost fi . Every customer j ∈ J has a
demand bj, and cij is the unit transportation cost from fa-
cility i to customer j. Without a loss of generality we can
normalize the customer demands to bj = 1 [5].

It has to be decided:
- facilities to be established and
- quantities to be supplied from facility i to customer j
such that the total cost (including fixed and variable costs)
is minimized.

Mathematically, the SPLP is formulated on the following
way:

min (1) c x f yij ij
j

n

i

m

i i
i

m

+












== =
∑∑ ∑

11 1

subject to:

xij
i

m

=
∑

1

= 1,for every j ∈ J ; (2)

0 ≤ xij ≤ yi and yi ∈ {0,1}, for every i ∈ I and every j ∈ J;
 (3)

where:
xij represents the quantity supplied from facility i to
customer j,
yi indicates whether facility i is established (yi = 1) or
not (yi = 0).

Let the set of established facilities be E = { i  yi = 1 }
with cardinality e=E.

Although some special cases of the SPLP are solvable in
polynomial time [16, 33, 27] in general, it is a NP-hard
problem [12]. Genetic algorithms are successfully used to
solve some NP-hard problems in [23, 25].

1.2. Literature Survey

Many approaches have been proposed for solving SPLP.
The presentation of all important contributions relevant to
SPLP lies beyond the scope of this paper. Some important
survey articles are [7, 9, 12]. We are going to mention
only several efficient and well-known methods to solve
SPLP.

The DUALOC algorithm by Erlenkotter [8] has been the
fastest algorithm for solving SPLP for a long time. This
algorithm is based on a linear programming dual forma-
tion (LP dual) in condensed form that evolved in simple
ascent and adjustment procedure. If ascent and adjustment

procedures do not find optimal solution, Branch-and-
Bound (BnB) procedure completes the solution process.

Guignard [10] proposed to strengthen the separable La-
grangean relaxation of the SPLP by using Benders ine-
qualities generated during a Lagrangean dual ascent pro-
cedure. The coupling that technique with a good primal
heuristic could reduce integrality gap.

In [14] Simao and Thizy presented streamlined dual sim-
plex algorithm designed on the basis of a covering formu-
lation of the SPLP. Their computational experience with
standard data sets indicates the superiority of dual ap-
proaches.

Körkel [11] showed how to modify a primal-dual version
of Erlenkotter's exact algorithm to get an improved pro-
cedure. The computational experience with large-scale
problem instances indicated that speedup to DUALOC is
significant (more than one order of magnitude).

Coon and Cornuejols present a method based upon the
exact solution of the condensed dual of LP relaxation via
orthogonal projections in [6].

In [37] Holmberg used a primal-dual solution approach
based on decomposition principles. He fixed some vari-
ables in the primal subproblem and relaxed some con-
straints in the dual subproblem. By fixing their Lagrange
multipliers, both of these problems become easier to solve
than the original one. The computational tests showed
advantageous in comparison to the dual ascent method of
Erlenkotter.

2. GENETIC ALGORITHMS (GA)

Under the most frequent classification, genetic algorithms
and some related techniques, together with Fuzzy logic
and Neural networks, are part of so called Soft comput-
ing.

GA are based on Darwin’s evolution theory and Mendel’s
laws of inheritance. If Darwin’s theory describes natural
processes, then GA imitate natural processes attempting
to solve particular problem. Menu important conse-
quences are coming from this claim:
− biological theories are bases of GA;
− imitating of natural mechanisms is, in fact, imitating of

biologist’s view on that natural mechanisms, and any
change in relevant biologist theories should be reflected
on GA;

− modifications of GA should be inspired not only with
trying to achieve better results, but primarily with try-
ing to better imitate occurrences and processes in na-
ture.

In other words, among authors in GA area is widely ac-
cepted [1] that only those modifications, which have
analogy in nature, can significantly improve theirs per-
formances.

According to Darwin, individuals in population are com-
peting for resources. Facts that lie in essence of natural
selection process are:
− better fitted individuals more often survive and they

have stronger influence on forming new generations;
− individual in new generation is formed by recombina-

tion of parent’s genetic material;
− from time to time mutation (random change of genetic

material) takes place.

Great deals of popularity of GA lies in fact that getting
new solutions has, indeed, parallel nature. Holland [2]
first observed that parallel nature of reproductive para-
digm and inherent efficiency of parallel processing.

Also, GA are easy to hybridize: they easy can be com-
bined with other algorithms that solve specific problem.
New, hybrid, algorithm has good features of both base
algorithms.

2.1. Definition

GA has following structure:
− search space – space of all possible solutions;
− population – set of actual candidates for solution; ele-

ments of population are called items, or search nodes,
or points in search space;

− string space – space which contains string representa-
tions of items in population;

− functions for conversion between points in search
space and points in string space (coding and decoding);

− set of genetic operators for generating new strings
(and new items);

− fitness function – it evaluate fitness (degree of adapta-
tion) for each item in population;

− stochastic control of genetic operators.

Basic steps in GA are:

1. Initialization – generating initial population by ran-
dom sampling.

2. Evaluation – calculating fitness for all items in
population.

3. Selection – choosing surviving items in population,
according to values of fitness function.

4. Recombination (includes crossover and mutation) –
changing item’s representation.

5. Repeating steps 1.-4. until fulfilling finishing crite-
ria.

Features that made distinction between GA and other
problem-solving methods are:
− algorithm work with codes that represents parameters,

not with parameters themselves;
− algorithm search in several points (population), there-

fore it is very robust;
− algorithm use probabilistic transition rules, rather than

deterministic;
− algorithm (in its pure form) doesn’t exploit additional

information about problem’s nature.

Simple GA (SGA) is start point for all other modifications
of GA. SGA has following operators: one-point cross-
over, one-point mutation and roulette selection. Individu-
als in SGA are represented with binary strings.

One point crossover is exchange of genetic material be-
tween two individuals from particular (randomly chosen)
position. This position is called crossover point.

 Parents

 crossover point crossover point

 Offsprings

Fig 1. One-point selection operator

One point mutation is simple complementation of one

(randomly chosen) bit in genetic material of the selected
individual.

 Parent

 Offspring

Fig 2. One-point mutation

Mutation is, in classical interpretation [2], less significant
operator than the crossover. Probability of mutation is
usually for two or three orders of magnitude smaller than
probability of crossover. It should be noted that nowadays
many authors denied traditional estimate that crossover is
much more significant than mutation [18, 28, 29].

Another operator that is very important in GA is selection.
Selection operator doesn’t modify individuals in popula-
tion. It selects individuals that will survive and pass their
genes to next generation. SGA uses roulette (also called
proportional) selection as selection operator. In roulette
selection, individual’s probability to survive is equal to
fitness of individual divided with average fitness of popu-
lation.

2.2. Literature Survey

Some important survey books and articles about GA are
[1, 3, 4, 39, 36].

Different modifications of pure GA are used to improve
performances:
− during forming of string that represents individual [1];
− during coding (transforming search space into string

space) – Gray coding, multidimensional coding [1, 36];
− during computing of a fitness value for each individual

and during executing one iteration in GA [24, 35];
− during designing of crossover [31, 21], mutation [1]

and selection operators [18, 17, 32, 26];
− during replacement of generation – steady state, elitist

strategy [1];
− during setting stochastic parameters that controls apply-

ing of GA operators [22, 30, 18, 15];
− creation of a hybrid between GA and some other heu-

ristic [20, 38].

3. TOURNAMENT AND
FINE GRAINED TOURNAMENT SELECTION

3.1. Tournament Selection

Tournament selection is one of the most popular selection
operators. Its popularity grows in recent time, because this
operator is excellent suited for applying in parallel genetic
algorithms.

In tournament selection, element of population is chosen
for passing into next generation if it is better (has better
fitness value) than several randomly selected opponents.
Tournament size Ntour is selection parameter.

Algorithm looks like:
Input: Population a (size of a is n), tournament size Ntour,
Ntour ∈ N
Output: Population after selection a’ (size of a’ is n)
Tournament_Selection:
begin

for i := 1 to n do
ai’ := best fitted item among Ntour elements

randomly selected from population;
return a’;

end;

Running time for this algorithm is O(n*Ntour). Usually is
Ntour<<n, so algorithm is linear, time is O(n). Thus, tour-
nament selection differs from explicitly ranking schemes
such are linear ranking and exponential ranking, because
it doesn’t need firstly to sort population during its work.

Tournament selection allows parallel execution during
choosing members of new generation. It is, just like rank-
ing schemes, invariant to translation (adding same value
to the fitness of all item in population) and scaling (multi-
plying fitness of all items in population with some value).

But, tournament selection doesn’t allow precise ratio set-
ting between exploration and exploitation [19], what is
crucial for using this selection method in practice. Ratio
between exploration and exploitation governs search
process in GA. Level of exploration (looking for new

solutions) and exploitation (using previously acquired
knowledge) is in tournament selection determined with
Ntour, that can be one of few integer values (usually 2-3
values are good candidates). Often happens that with
smaller tournament size search process runs too slow, and
that with bigger tournament size it runs too fast and pre-
mature converges.

More details about theoretical features of tournament se-
lection can be found in [34].

3.2. Fine Grained Tournament Selection

In [34] is described one improvement of the tournament
selection, named fine grained tournament selection

Instead of integer parameter Ntour (which represents tour-
nament size), new operator allows real valued parameter
Ftour – wanted average tournament size. This parameter
governs selection procedure, so average tournament size
in population should be as close as possible to it.

Just like in tournament selection, item is choused if it is
better than its randomly choused opponents. But, this time
tournament size isn’t fixed within population. So, during
one selection step will be held tournaments with different
number of competitors.

Current implementation of fine grained tournament selec-
tion during one step of execution holds tournaments with
difference among sizes less or equal to 1. Sizes of n held
tournaments are chosen with wish that its average be-
comes as close as possible to real value Ftour.

Algorithm looks like:
Input: Population a (size of a is n), wished average tour-
nament size Ftour, Ftour ∈ R
Output: Population after selection a’ (size of a’ is n)
Fine_Grained_Tournament_Selection:
begin

Ftour
- := trunc(Ftour)

Ftour
+ := trunc(Ftour) + 1

n- := trunc (n * (1 - (t - trunc (Ftour))))
n+ := n - trunc (n * (1 - (t - trunc (Ftour))))
/* tournaments with size Ftour

- */
for i := 1 to n- do

ai’ := best fitted item among Ftour
- elements

randomly selected from population;
/* tournaments with size Ftour

+ */
 for i := n-+1 to n do

ai’ := best fitted item among Ftour
+ elements

randomly selected from population;
return a’

end;

Fine grained tournament selection provides that ratio be-
tween exploration and exploitation can be set very pre-

cise. This selection method (like tournament selection)
also has analogy with some processes that are happening
in nature.

Theoretical properties of new selection operator are also
discussed in [34]. It is shown that new operator preserves
good features of classical tournament selection (algorithm
has linear time of execution, it allows execution in paral-
lel, it is invariant to translation and scaling, etc.).

In that work is proved that classical tournament selection
is special case of fine grained tournament selection.

4. GA IMPLEMENTATION

Implementation used for comparison among several selec-
tion methods is based on binary representation, uniform
crossover, simple mutation, steady-state generation re-
placement with elitist strategy and caching of GA.

Three types of selection methods are compared:
− Rank based selection, with rank 2.5 for the best indi-

vidual down to 0.7 for the worst, by step 0.012. For
SPLP, this selection scheme successfully prevents pre-
mature convergence in local optima and loosing the ge-
netic material.

− Classical tournament selection with tournament size
Ntour ∈ {5, 6}.

− Fine grained tournament selection with wanted average
tournament size Ftour ∈ {4.5, 5.5, 5.6, 5.8, 6.2, 6.4}

Uniform crossover is performed, that provides minimal
disruption of individual’s genes. It is important part for
success of GA, because interaction among genes in indi-
vidual’s gene code isn’t too big.

Simple mutation is used and its run-time is improved by
realization through normal distribution. Mutation rate
depends on problem size and it exponentially decreases
from 0.4/n to 0.15/n.

Steady-state generation replacement with elitist strategy is
used. In each generation, only 1/3 of population is re-
placed. Remaining 2/3 of population is directly passed to
the next generation. Those elitist individuals don’t need
reevaluation (their objective value is already evaluated).
The maximal number of generation is 2000*n. If best
individual is same for 1000*n generations, GA termi-
nates.

Population size is 150 individuals and population is ran-
domly initialized in first generation. Binary code is used
for encoding of variables.

Finally, run-time performance of the GA is improved by
caching technique [13]. Least recently used (LRU) strat-
egy, which is simple but effective, is used for caching
GA. Caching is implemented by hash-queue data struc-
ture.

5.COMPUTATIONAL RESULTS

Appliance of the fine grained tournament selection on
SPLP gives better results in comparison to both rank-
based and classical tournament selection (see Tables 1-4).

Results from these tables are obtained running GA on
Pentium III /600MHz PC, with 330 megabytes of psychi-
cal memory.

All these values are averages determined from 20 inde-
pendent runs per problem instance.

Due to better visibility, results are summary displayed per
instance group. Columns in tables represent problem in-
stance groups and rows represent selection type.

Tables contain results for: rang based selection, tourna-
ment selection (Ntour = 5, 6) and fine grained tournament
selection (Ftour = 4.5, 5.5, 5.6, 5.8, 6.2, 6.4).

Every cell in tables has two values. Upper value is aver-
age number of generations and lower value is average
running time (in seconds).

In all executions of every program instance is obtained
same result that is equal to optimal or previously best
known solution. Best times for each instance group in
table are shaded.

Table 1. Comparison of selection operators for ORLIB
instances 41-74 and 81-104

Selection 41-74 81-104
r. b. 17.7

0.10
33.6
0.17

f. g. t. (Ftour=4.5) 10.4
0.07

34.4
0.17

t. (Ntour=5) 9.1
0.06

49.1
0.21

f. g. t. (Ftour=5.5) 9
0.06

53.5
0.24

f. g. t. (Ftour=5.6) 8.8
0.05

41.3
0.18

f. g. t. (Ftour=5.8) 8.9
0.05

46.6
0.20

t. (Ntour=6) 8.8
0.05

67.1
0.30

f. g. t. (Ftour=6.2) 8.5
0.05

77.1
0.34

f. g. t. (Ftour=6.4) 8.8
0.05

87.1
0.38

Table 2. Comparison of selection operators for ORLIB
instances 111-134 and A-C

Selection 111-134 A-C
r. b. 109.2

0.51
1328
16.28

f. g. t. (Ftour=4.5) 145.3
0.65

1633
16.78

t. (Ntour=5) 128.9
0.52

1433
12.72

f. g. t. (Ftour=5.5) 136.6
0.62

1209
12.24

f. g. t. (Ftour=5.6) 136.3
0.55

1694
12.47

f. g. t. (Ftour=5.8) 151.2
0.61

2347
16.81

t. (Ntour=6) 146
0.65

1078
10.74

f. g. t. (Ftour=6.2) 164.4
0.73

1890
18.22

f. g. t. (Ftour=6.4) 148.6
0.66

2076
20.06

It becomes clear from obtained results that almost all
ORLIB instances haven’t sufficient size to properly test
behavior of algorithm on large-scale instances. Thus, se-
lection strategies are tested on problem instances gener-
ated and described in [39].

Table 3. Comparison of selection operators for generated

instances
Selection MO MP MQ MR MS

Rank
based

112.4
0.59

181.7
1.18

269.9
2.69

423.7
4.68

879.4
23.18

Fine G. T.
4.5

76.8
0.46

131.6
0.83

205.9
1.51

347
3.47

746.9
17.24

T. 5 85.2
0.36

128.6
0.67

206.2
1.28

357
3.14

732.4
15.78

Fine G. T.
5.5

96.4
0.49

127.9
0.79

208.6
1.51

340.6
3.31

756.1
16.77

Fine G. T.
5.6

83.6
0.35

131.5
0.55

192.1
0.93

343.4
2.52

723.6
14.47

Fine G. T.
5.8

92.2
0.38

122.8
0.51

204.4
0.99

345.7
2.53

766.2
14.94

T. 6 96.7
0.49

131.3
0.81

210.4
1.50

332.4
3.19

743.8
16.31

Fine G. T.
6.2

83.5
0.43

122.6
0.76

207
1.47

345.6
3.31

740.5
16.16

Fine G. T.
6.4

87.4
0.44

130.7
0.81

200.3
1.42

340.7
3.24

721.3
15.65

In most cases, best results (or results that are very close to
best ones) are produced by fine grained tournament selec-
tion, with Ftour = 5.6. Improvement to other selection
method is significant (usually 10%-20%) and for some
(mainly large-sized) instances it is even bigger.

6. CONCLUSION

In this papers is presented GA implementation for solving
simple plant location problem. Such approach is very suc-

cessful in practice and recommended for the large-scale
problem instances (more than 1000 facility locations and
customers)

GA implementation uses as selection operator newly de-
signed fine grained tournament selection, generalization
of classical tournament selection. New selection operator
keeps all good features of classical tournament selection.

For SPLP, problem fine grained tournament selection
significantly outperforms both rank based and classical
tournament selection.

REFERENCES

[1] D.E. Goldberg, Genetic algorithms in search, op-

timization and machine learning, Reading, Mass.,
USA, Addison-Weseley Publ. Comp., 1989.

[2] J. Holland, Adaptation in Natural and Artificial
Systems, The University of Michigan Press, 1975.

[3] D. Beasley, D.R. Bull and R.R. Martin, "An over-
view of genetic algorithms, part 1, fundamentals",
University Computing, vol. 15, no. 2, pp. 58-69,
1993.

[4] D. Beasley, D.R. Bull and R.R. Martin, "An over-
view of genetic algorithms, part 2, research topics",
University Computing, vol. 15, no. 4, pp. 170-181,
1993.

[5] J.E. Beasley, “Lagrangean heuristic for location
problems”, European Journal of Operational Re-
search, vol. 65, pp. 383-399, 1993.

[6] A.R. Conn and G. Cornuejols, “A projection
method for the uncapacitated facility location prob-
lem, Mathematical Programming, vol. 46, pp. 273-
298, 1990.

[7] P.M. Dearing, “Location Problems”, Operations
Research Letters, vol. 4, pp. 95-98, 1985.

[8] D. Erlenkotter, “A dual-based procedure for unca-
pacitated facility location”, Operations Research,
vol. 26 pp. 992-1009, 1978.

[9] L.L. Gao, E. Robinson and Jr. Powell, “Uncapaci-
tated facility location: general solution procedure
and computational experience”, European Journal
of Operational Research, vol. 76, no. 3, pp. 410-
427, 1994.

[10] M. Guignard and A Lagrangean, “Dual ascent al-
gorithm for simple plant location problems”, Euro-
pean Journal of Operational Research, vol. 35, pp.
193-200, 1988.

[11] M. Koerkel, “On the exact solution of large-scale
simple plant location problems”, European Journal
of Operational Research, vol. 39, pp. 157-173,
1989.

[12] J. Krarup and P.M. Pruzan, “The simple plant loca-
tion problem: survey and synthesis”, European
Journal of Operational Research, vol. 12, pp. 36-
81, 1983.

[13] J. Kratica, "Improving performances of the genetic
algorithm by caching", Computers and Artificial
Intelligence, vol. 18, no. 3, pp. 271-283, 1999.

[14] H.P. Simao and J.M. Thizy, “A dual simplex algo-
rithm for the canonical representation of the un-
capacitated facility location problem”, Operations
Research Letters, vol. 8, no. 5, pp. 279-286, 1989.

[15] A. Aizawa and B. W. Wah, “Dynamic control of
genetic algorithms in a noisy environment”, in
Proc. of the Fifth International Conference on Ge-
netic Algorithms, pg. 48-55, San Mateo, California,
1993.

[16] A.A. Aqeev and V.S. Beresnev, “Polynomially
solvable cases of the simple plant location prob-
lem”, in Proceeding of the First Integer Program-
ming and Combinatorial Optimization Conference,
pp. 1-6, 1990.

[17] T. Baeck and F. Hoffmeister, “Extended selection
mechanisms in genetic algorithms”, in Proc. of the
Fourth International Conference on Genetic Algo-
rithms, pg. 92-99, San Mateo, California, 1991.

[18] T. Baeck, “Self-adaptation in genetic algorithms”,
in Proc. of the First European Conference on Arti-
ficial Life, MIT Press, 1992.

[19] T. Blickle and L. Thiele, “A mathematical analysis
of tournament selection”, in Proc. of the Sixth In-
ternational Conference on Genetic Algorithms, pp.
9-16, , San Mateo, California, 1995.

[20] E. K. Burke, D. G. Elliman and R. F. Weare, “A
hybrid genetic algorithm for highly constrained
time tabling problems”, in Proc. of the Sixth Inter-
national Conference on Genetic Alghorithms, pg.
605-610, San Mateo, California, 1995.

[21] R. A. Caruana, L. J. Eshelman and D. J. Schaffer,
“Representation and hidden bias II: eliminating de-
fining length bias in genetic search via shuffle
crossover”, in Machine Learning, pg. 750-755,
1991.

[22] L. Davis, “Bit-climbing, representational bias, and
test suite design”, in Proc. of the Fourth Interna-
tional Conference on Genetic Algorithms, pg. 18-
23, San Mateo, California, 1991.

[23] K.E. De Jong and W.M. Spears, “Using genetic
algorithms to solve NP-complete problems”, in
Proc. of the Third International Conference on Ge-
netic Algorithms, pp. 124-132, San Mateo, Califor-
nia,1989.

[24] D. E. Goldberg, K. Deb and B. Korb, “Don’t
worry, be messy”, in Proc. of the Fourth Interna-
tional Conference on Genetic Algorithms, pg. 24-
30, San Mateo, California, 1991.

[25] S. Khuri, T. Back and J. Heitkotter, “An evolu-
tionary approach to combinatorial optimization
problems, in Proc. of CSC'94, Phoenix, Arizona,
1994.

[26] T. Kuo and S. Hwang, “A genetic algorithm with
disruptive selection”, in Proc. of the Fifth Interna-
tional Conference on Genetic Algorithms, pg. 65-
69, San Mateo, California, 1993.

[27] C. Ryu and M. Guignard, “An exact algorithm for
the simple plant location problem with an aggre-
gate capacity constraint”, in Proc. of TIMS / ORSA
Meeting, Orlando, FL 92-04-09, 1992.

[28] D. J. Schaffer and L. J. Eshelman, “On crossover
as evolutionary viable strategy”, in Proc. of the
Fourth International Conference on Genetic Algo-
rithms, pg. 61-68, San Mateo, California, 1991.

[29] W. M. Spears, “Crossover or mutation?”, in Foun-
dation of Genetic Algorithms 2 - FOGA 2, pg. 221-
239, San Mateo, California, 1992.

[30] W. M. Spears, “Adapting crossover in evolutionary
algorithms”, in Evolutionary Programming IV, pg.
367-384, 1992.

[31] G. Syswerda, “Uniform crossover in genetic algo-
rithms”, in Proc. of the Third International Con-
ference on Genetic Algorithms, pg. 2-9, edited by
Schaffer David J, San Mateo, California, 1989.

[32] D. Whitley, “The GENITOR algorithm and selec-
tion pressure: why rank-based allocation of repro-
ductive trials is best”, in Proc. of the Third Interna-
tional Conference on Genetic Algorithms, pg. 116-
123, San Mateo, California, 1989

[33] C. De Simone and C. Mannino, “Easy instances of
the plant location problem”, Technical Report
R-427, Gennaio, University of Roma, 1996.

[34] V. Filipović, “Proposition for improvement tourna-
ment selection operator in genetic algorithms”, MS
thesis, Faculty of Mathematics, Belgrade, 1998. (in
Serbian).

[35] J. Grefenstette, “Virtual genetic algorithms: first
results”, Internal report, NAVY Center for Applied
Research in Artificial Intelligence (NCARAI),
1995.

[36] J. Heitkoetter, D. Beasley, “The Hitch-Hiker’s
guide to evolutionary computation”, FAQ in
comp.ai.genetic, 1999.

[37] K. Holmberg, “Experiments with primal-dual de-
composition and subgradient methods for the un-
capacitated facility location problem, Research Re-
port LiTH – MAT / OPT - WP – 1995 - 08, Opti-
mization, Department of Mathematics, Linkoping
Institute of Technology, Sweden, 1995.

[38] A. Juels and M. Wattenberg, “Stochastic hill
climbing as a baseline method for evaluating ge-
netic algorithms”, Internal report, Groupe de Bio-
Informatique, Ecole Normale Superieure, septem-
ber 1994.

[39] J. Kratica, "Parallelization of genetic algorithms for
solving some NP-complete problems", PhD thesis,
Faculty of Mathematics, Belgrade, 2000. (in Ser-
bian).

THE AUTHORS

Vladimir Filipović was born in Podgorica, Montenegro,
Yugoslavia (1968). He received his B.S. degree in com-
puter science (1993) and M.Sc. in computer science
(1998) from University of Belgrade, Faculty of Mathe-
matics. Since 1994 is teaching assistant at the Faculty of
Mathematics. Since 1994 is teaching assistant at the Fac-
ulty of Mathematics. Also working as a software
consultant for Analytx, Inc. USA. His research interests
include genetic algorithms, parallel algorithms and opera-
tional research.

Jozef Kratica was born in 1966 in Belgrade, Serbia,
Yugoslavia. He received his B.S. degrees in mathematics
(1988) and computer science (1988), M.Sc. in mathemat-
ics (1994) and Ph.D. in computer science (2000) from
University of Belgrade, Faculty of Mathematics. In 2000,
he joined Mathematical Institute as a researcher. As a
delegation leader participated on the International Olym-
piads in Informatics (IOI'90 Minsk - Belarus, IOI'93
Mendoza - Argentina). His research interests include ge-
netic algorithms (evolutionary computation), parallel and
distributed computing and location problems.

Dušan Tošić was born in Knjaževac, Serbia, Yugoslavia
(1949). He received his B.S. degree in mathematics
(1972), M.Sc. in mathematics (1978) and Ph.D. in
mathematics (1984) from University of Belgrade, Faculty
of Mathematics. Since 1985 he has been professor of
computer science at Faculty of Mathematics His research
interests include parallel algorithms, optimization, and
evolutionary computation.

Ivana Ljubić was born in 1973 in Prokuplje, Serbia,
Yugoslavia. She received his B.S. degree in computer
science (1996) and M.Sc. in mathematics (2000) from
University of Belgrade, Faculty of Mathematics. She cur-
rently working on Ph.D. studies at Vienna University of
Technology, Institute for Computer Graphics. Her re-
search interests include evolutionary computation and
biconnectivity augmentation problems.

	ABSTRACT
	1. INTRODUCTION
	1.1. Problem Definition
	1.2. Literature Survey

	2. GENETIC ALGORITHMS (GA)
	2.1. Definition
	2.2. Literature Survey

	3. TOURNAMENT AND
	FINE GRAINED TOURNAMENT SELECTION
	3.1. Tournament Selection
	3.2. Fine Grained Tournament Selection

	4. GA IMPLEMENTATION
	5.COMPUTATIONAL RESULTS
	
	
	Selection
	Selection
	Selection

	6. CONCLUSION
	REFERENCES
	THE AUTHORS

