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ABSTRACT 
 
The simple plant location problem is considered and a 
genetic algorithm is proposed to solve this problem. Ge-
netic algorithm that solves simple plant location problem 
uses an improvement of tournament selection, called fine 
grained tournament selection, as selection operator. New 
operator is generalization of classical tournament selec-
tion, that keeps all good features of classical tournament 
selection. By using the developed algorithm it is possible 
to solve SPLP with more than 1000 facility sites and cus-
tomers. Computational results are presented and com-
pared to rank-based and classical tournament selection. 
 

1. INTRODUCTION 
 
Combinatorial optimization problems are important part 
of the global optimization. One such problem is simple 
plant location problem (SPLP). This problem is also 
known as uncapacitated warehouse location problem or 
uncapacitated facility location problem. 
 
1.1.  Problem Definition 
 
Consider a set I = {1,...., m } of candidate sites for facility 
location, and a set J = {1,...., n} of customers. Each facil-
ity i ∈ I  has a fixed cost fi . Every customer j ∈ J  has a 
demand bj, and cij is the unit transportation cost from fa-
cility i to customer j. Without a loss of generality we can 
normalize the customer demands to bj = 1 [5].  
 
It has to be decided:  
- facilities to be established and  
- quantities to be supplied from facility i to customer j  
such that the total cost (including fixed and variable costs) 
is minimized. 
 

Mathematically, the SPLP is formulated on the following 
way: 
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= 1,for every  j ∈ J ; (2) 

0 ≤ xij ≤ yi and yi ∈ {0,1}, for every i ∈ I and every j ∈ J; 
  (3) 

where: 
xij represents the quantity supplied from facility i to 
customer j, 
yi indicates whether facility i is established (yi = 1) or 
not (yi  = 0). 

Let the set of established facilities be E = { i  yi = 1 } 
with cardinality e=E.  
 
Although some special cases of the SPLP are solvable in 
polynomial time [16, 33, 27] in general, it is a NP-hard 
problem [12]. Genetic algorithms are successfully used to 
solve some NP-hard problems in [23, 25]. 
 
1.2.  Literature Survey 
 
Many approaches have been proposed for solving SPLP. 
The presentation of all important contributions relevant to 
SPLP lies beyond the scope of this paper. Some important 
survey articles are [7, 9, 12]. We are going to mention 
only several efficient and well-known methods to solve 
SPLP. 
 
The DUALOC algorithm by Erlenkotter [8] has been the 
fastest algorithm for solving SPLP for a long time. This 
algorithm is based on a linear programming dual forma-
tion (LP dual) in condensed form that evolved in simple 
ascent and adjustment procedure. If ascent and adjustment 



procedures do not find optimal solution, Branch-and-
Bound (BnB) procedure completes the solution process. 
 
Guignard [10] proposed to strengthen the separable La-
grangean relaxation of the SPLP by using Benders ine-
qualities generated during a Lagrangean dual ascent pro-
cedure. The coupling that technique with a good primal 
heuristic could reduce integrality gap.  
 
In [14] Simao and Thizy presented streamlined dual sim-
plex algorithm designed on the basis of a covering formu-
lation of the SPLP. Their computational experience with 
standard data sets indicates the superiority of dual ap-
proaches. 
 
Körkel [11] showed how to modify a primal-dual version 
of Erlenkotter's exact algorithm to get an improved pro-
cedure. The computational experience with large-scale 
problem instances indicated that speedup to DUALOC is 
significant (more than one order of magnitude). 
 
Coon and Cornuejols present a method based upon the 
exact solution of the condensed dual of LP relaxation via 
orthogonal projections in [6]. 
 
In [37] Holmberg used a primal-dual solution approach 
based on decomposition principles. He fixed some vari-
ables in the primal subproblem and relaxed some con-
straints in the dual subproblem. By fixing their Lagrange 
multipliers, both of these problems become easier to solve 
than the original one. The computational tests showed 
advantageous in comparison to the dual ascent method of 
Erlenkotter. 
 

2. GENETIC ALGORITHMS (GA) 
 
Under the most frequent classification, genetic algorithms 
and some related techniques, together with Fuzzy logic 
and Neural networks, are part of so called Soft comput-
ing. 
 
GA are based on Darwin’s evolution theory and Mendel’s 
laws of inheritance. If Darwin’s theory describes natural 
processes, then GA imitate natural processes attempting 
to solve particular problem. Menu important conse-
quences are coming from this claim: 
− biological theories are bases of GA;  
− imitating of natural mechanisms is, in fact, imitating of 

biologist’s view on that natural mechanisms, and any 
change in relevant biologist theories should be reflected 
on GA; 

− modifications of GA should be inspired not only with 
trying to achieve better results, but primarily with try-
ing to better imitate occurrences and processes in na-
ture.  

 
In other words, among authors in GA area is widely ac-
cepted [1] that only those modifications, which have 
analogy in nature, can significantly improve theirs per-
formances. 

 
According to Darwin, individuals in population are com-
peting for resources. Facts that lie in essence of natural 
selection process are: 
− better fitted individuals more often survive and they 

have stronger influence on forming new generations; 
− individual in new generation is formed by recombina-

tion of parent’s genetic material; 
− from time to time mutation (random change of genetic 

material) takes place. 
 
Great deals of popularity of GA lies in fact that getting 
new solutions has, indeed, parallel nature. Holland [2] 
first observed that parallel nature of reproductive para-
digm and inherent efficiency of parallel processing.  
 
Also, GA are easy to hybridize: they easy can be com-
bined with other algorithms that solve specific problem. 
New, hybrid, algorithm has good features of both base 
algorithms. 
 
2.1.  Definition 
 
GA has following structure: 
− search space – space of all possible solutions; 
− population – set of actual candidates for solution; ele-

ments of population are called items, or search nodes, 
or points in search space; 

− string space – space which contains string representa-
tions of items in population; 

− functions for conversion between points in search 
space and points in string space (coding and decoding); 

− set of genetic operators for generating new strings 
(and new items);  

− fitness function – it evaluate fitness (degree of adapta-
tion) for each item in population; 

− stochastic control of genetic operators. 
 
Basic steps in GA are: 

1. Initialization – generating initial population by ran-
dom sampling. 

2. Evaluation – calculating fitness for all items in 
population. 

3. Selection – choosing surviving items in population, 
according to values of fitness function. 

4. Recombination (includes crossover and mutation) – 
changing item’s representation. 

5. Repeating steps 1.-4. until fulfilling finishing crite-
ria. 

 
Features that made distinction between GA and other 
problem-solving methods are: 
−  algorithm work with codes that represents parameters, 

not with parameters themselves; 
−  algorithm search in several points (population), there-

fore it is very robust; 
−  algorithm use probabilistic transition rules, rather than 

deterministic; 
−  algorithm (in its pure form) doesn’t exploit additional 

information about problem’s nature.  



 
Simple GA (SGA) is start point for all other modifications 
of GA. SGA has following operators: one-point cross-
over, one-point mutation and roulette selection. Individu-
als in SGA are represented with binary strings.  
 
One point crossover is exchange of genetic material be-
tween two individuals from particular (randomly chosen) 
position. This position is called crossover point. 
 
                                   Parents

                   crossover point                        crossover point

               Offsprings

 
Fig 1. One-point selection operator 

 
One point mutation is simple complementation of one 

(randomly chosen) bit in genetic material of the selected 
individual.  

                Parent

              Offspring

 
Fig 2. One-point mutation 

 
Mutation is, in classical interpretation [2], less significant 
operator than the crossover. Probability of mutation is 
usually for two or three orders of magnitude smaller than 
probability of crossover. It should be noted that nowadays 
many authors denied traditional estimate that crossover is 
much more significant than mutation [18, 28, 29]. 
 
Another operator that is very important in GA is selection. 
Selection operator doesn’t modify individuals in popula-
tion. It selects individuals that will survive and pass their 
genes to next generation. SGA uses roulette (also called 
proportional) selection as selection operator. In roulette 
selection, individual’s probability to survive is equal to 
fitness of individual divided with average fitness of popu-
lation.  
 
2.2.  Literature Survey 
 
Some important survey books and articles about GA are 
[1, 3, 4, 39, 36]. 
 

Different modifications of pure GA are used to improve 
performances: 
− during forming of string that represents individual [1]; 
− during coding (transforming search space into string 

space) – Gray coding, multidimensional coding [1, 36]; 
− during computing of a fitness value for each individual 

and during executing one iteration in GA [24, 35]; 
− during designing of crossover [31, 21], mutation [1] 

and selection operators [18, 17, 32, 26]; 
− during replacement of generation – steady state, elitist 

strategy [1]; 
− during setting stochastic parameters that controls apply-

ing of GA operators [22, 30, 18, 15]; 
− creation of a hybrid between GA and some other heu-

ristic [20, 38]. 
 

3. TOURNAMENT AND  
FINE GRAINED TOURNAMENT SELECTION 

 
3.1.  Tournament Selection 
 
Tournament selection is one of the most popular selection 
operators. Its popularity grows in recent time, because this 
operator is excellent suited for applying in parallel genetic 
algorithms.  
 
In tournament selection, element of population is chosen 
for passing into next generation if it is better (has better 
fitness value) than several randomly selected opponents. 
Tournament size Ntour is selection parameter. 
 
Algorithm looks like: 
Input: Population a (size of a is n), tournament size Ntour, 
Ntour ∈ N 
Output: Population after selection a’ (size of a’ is n) 
Tournament_Selection: 
begin 

for i := 1 to n do 
ai’ := best fitted item among Ntour elements 

randomly selected from population;  
return a’; 

end; 
 
Running time for this algorithm is O(n*Ntour). Usually is 
Ntour<<n, so algorithm is linear, time is O(n). Thus, tour-
nament selection differs from explicitly ranking schemes 
such are linear ranking and exponential ranking, because 
it doesn’t need firstly to sort population during its work.  
 
Tournament selection allows parallel execution during 
choosing members of new generation. It is, just like rank-
ing schemes, invariant to translation (adding same value 
to the fitness of all item in population) and scaling (multi-
plying fitness of all items in population with some value).  
 
But, tournament selection doesn’t allow precise ratio set-
ting between exploration and exploitation [19], what is 
crucial for using this selection method in practice. Ratio 
between exploration and exploitation governs search 
process in GA. Level of exploration (looking for new 



solutions) and exploitation (using previously acquired 
knowledge) is in tournament selection determined with 
Ntour, that can be one of few integer values (usually 2-3 
values are good candidates). Often happens that with 
smaller tournament size search process runs too slow, and 
that with bigger tournament size it runs too fast and pre-
mature converges.  
 
More details about theoretical features of tournament se-
lection can be found in [34]. 
 
3.2.  Fine Grained Tournament Selection 
 
In [34] is described one improvement of the tournament 
selection, named fine grained tournament selection  
 
Instead of integer parameter Ntour (which represents tour-
nament size), new operator allows real valued parameter 
Ftour – wanted average tournament size. This parameter 
governs selection procedure, so average tournament size 
in population should be as close as possible to it.  
 
Just like in tournament selection, item is choused if it is 
better than its randomly choused opponents. But, this time 
tournament size isn’t fixed within population. So, during 
one selection step will be held tournaments with different 
number of competitors.  
 
Current implementation of fine grained tournament selec-
tion during one step of execution holds tournaments with 
difference among sizes less or equal to 1. Sizes of n held 
tournaments are chosen with wish that its average be-
comes as close as possible to real value Ftour. 
 
Algorithm looks like: 
Input: Population a (size of a is n), wished average tour-
nament size Ftour, Ftour ∈ R 
Output: Population after selection a’ (size of a’ is n) 
Fine_Grained_Tournament_Selection: 
begin 

Ftour
- := trunc( Ftour ) 

Ftour
+ := trunc( Ftour ) + 1  

n- := trunc ( n * ( 1 - ( t - trunc ( Ftour ) ) ) ) 
n+ := n - trunc ( n * ( 1 - ( t - trunc ( Ftour ) ) ) )  
/* tournaments with size Ftour

- */ 
for i := 1 to n- do 

ai’ := best fitted item among Ftour
- elements 

randomly selected from population;  
/* tournaments with size Ftour

+ */ 
 for i := n-+1 to n do 

ai’ := best fitted item among Ftour
+ elements 

randomly selected from population;  
return a’ 

end; 
 
Fine grained tournament selection provides that ratio be-
tween exploration and exploitation can be set very pre-

cise. This selection method (like tournament selection) 
also has analogy with some processes that are happening 
in nature.  
 
Theoretical properties of new selection operator are also 
discussed in [34]. It is shown that new operator preserves 
good features of classical tournament selection (algorithm 
has linear time of execution, it allows execution in paral-
lel, it is invariant to translation and scaling, etc.).  
 
In that work is proved that classical tournament selection 
is special case of fine grained tournament selection. 
 

4. GA IMPLEMENTATION 
 
Implementation used for comparison among several selec-
tion methods is based on binary representation, uniform 
crossover, simple mutation, steady-state generation re-
placement with elitist strategy and caching of GA.  
 
Three types of selection methods are compared: 
− Rank based selection, with rank 2.5 for the best indi-

vidual down to 0.7 for the worst, by step 0.012. For 
SPLP, this selection scheme successfully prevents pre-
mature convergence in local optima and loosing the ge-
netic material.  

− Classical tournament selection with tournament size 
Ntour ∈ {5, 6}. 

− Fine grained tournament selection with wanted average 
tournament size Ftour ∈ {4.5, 5.5, 5.6, 5.8, 6.2, 6.4} 

 
Uniform crossover is performed, that provides minimal 
disruption of individual’s genes. It is important part for 
success of GA, because interaction among genes in indi-
vidual’s gene code isn’t too big.  
 
Simple mutation is used and its run-time is improved by 
realization through normal distribution. Mutation rate 
depends on problem size and it exponentially decreases 
from 0.4/n to 0.15/n.   
 
Steady-state generation replacement with elitist strategy is 
used. In each generation, only 1/3 of population is re-
placed. Remaining 2/3 of population is directly passed to 
the next generation. Those elitist individuals don’t need 
reevaluation (their objective value is already evaluated). 
The maximal number of generation is 2000*n. If best 
individual is same for 1000*n generations, GA termi-
nates. 
 
Population size is 150 individuals and population is ran-
domly initialized in first generation. Binary code is used 
for encoding of variables.  
 
Finally, run-time performance of the GA is improved by 
caching technique [13]. Least recently used (LRU) strat-
egy, which is simple but effective, is used for caching 
GA. Caching is implemented by hash-queue data struc-
ture.  
 



5.COMPUTATIONAL RESULTS 
 
Appliance of the fine grained tournament selection on 
SPLP gives better results in comparison to both rank-
based and classical tournament selection (see Tables 1-4). 
 
Results from these tables are obtained running GA on 
Pentium III /600MHz PC, with 330 megabytes of psychi-
cal memory.  
 
All these values are averages determined from 20 inde-
pendent runs per problem instance.  
 
Due to better visibility, results are summary displayed per 
instance group. Columns in tables represent problem in-
stance groups and rows represent selection type.  
 
Tables contain results for: rang based selection, tourna-
ment selection (Ntour = 5, 6) and fine grained tournament 
selection (Ftour = 4.5, 5.5, 5.6, 5.8, 6.2, 6.4 ).  
 
Every cell in tables has two values. Upper value is aver-
age number of generations and lower value is average 
running time (in seconds).  
 
In all executions of every program instance is obtained 
same result that is equal to optimal or previously best 
known solution. Best times for each instance group in 
table are shaded. 
 

Table 1. Comparison of selection operators for ORLIB 
instances 41-74 and 81-104 

Selection 41-74 81-104 
r. b. 17.7 

0.10 
33.6 
0.17 

f. g. t. (Ftour=4.5) 10.4 
0.07 

34.4 
0.17 

t. (Ntour=5) 9.1 
0.06 

49.1 
0.21 

f. g. t. (Ftour=5.5) 9 
0.06 

53.5 
0.24 

f. g. t. (Ftour=5.6) 8.8 
0.05 

41.3 
0.18 

f. g. t. (Ftour=5.8) 8.9 
0.05 

46.6 
0.20 

t. (Ntour=6) 8.8 
0.05 

67.1 
0.30 

f. g. t. (Ftour=6.2) 8.5 
0.05 

77.1 
0.34 

f. g. t. (Ftour=6.4) 8.8 
0.05 

87.1 
0.38 

 

Table 2. Comparison of selection operators for ORLIB 
instances 111-134 and A-C 

Selection 111-134 A-C 
r. b. 109.2 

0.51 
1328 
16.28 

f. g. t. (Ftour=4.5) 145.3 
0.65 

1633 
16.78 

t. (Ntour=5) 128.9 
0.52 

1433 
12.72 

f. g. t. (Ftour=5.5) 136.6 
0.62 

1209 
12.24 

f. g. t. (Ftour=5.6) 136.3 
0.55 

1694 
12.47 

f. g. t. (Ftour=5.8) 151.2 
0.61 

2347 
16.81 

t. (Ntour=6) 146 
0.65 

1078 
10.74 

f. g. t. (Ftour=6.2) 164.4 
0.73 

1890 
18.22 

f. g. t. (Ftour=6.4) 148.6 
0.66 

2076 
20.06 

 
It becomes clear from obtained results that almost all 
ORLIB instances haven’t sufficient size to properly test 
behavior of algorithm on large-scale instances. Thus, se-
lection strategies are tested on problem instances gener-
ated and described in [39]. 
 
Table 3. Comparison of selection operators for generated 

instances 
Selection MO MP MQ MR MS 

Rank 
based 

112.4 
0.59 

181.7 
1.18 

269.9 
2.69 

423.7 
4.68 

879.4 
23.18 

Fine G. T. 
4.5 

76.8 
0.46 

131.6 
0.83 

205.9 
1.51 

347 
3.47 

746.9 
17.24 

T. 5 85.2 
0.36 

128.6 
0.67 

206.2 
1.28 

357 
3.14 

732.4 
15.78 

Fine G. T. 
5.5 

96.4 
0.49 

127.9 
0.79 

208.6 
1.51 

340.6 
3.31 

756.1 
16.77 

Fine G. T. 
5.6 

83.6 
0.35 

131.5 
0.55 

192.1 
0.93 

343.4 
2.52 

723.6 
14.47 

Fine G. T. 
5.8 

92.2 
0.38 

122.8 
0.51 

204.4 
0.99 

345.7 
2.53 

766.2 
14.94 

T. 6 96.7 
0.49 

131.3 
0.81 

210.4 
1.50 

332.4 
3.19 

743.8 
16.31 

Fine G. T. 
6.2 

83.5 
0.43 

122.6 
0.76 

207 
1.47 

345.6 
3.31 

740.5 
16.16 

Fine G. T. 
6.4 

87.4 
0.44 

130.7 
0.81 

200.3 
1.42 

340.7 
3.24 

721.3 
15.65 

 
In most cases, best results (or results that are very close to 
best ones) are produced by fine grained tournament selec-
tion, with Ftour = 5.6. Improvement to other selection 
method is significant (usually 10%-20%) and for some 
(mainly large-sized) instances it is even bigger. 
 

6. CONCLUSION 
 
In this papers is presented GA implementation for solving 
simple plant location problem. Such approach is very suc-



cessful in practice and recommended for the large-scale 
problem instances (more than 1000 facility locations and 
customers) 
 
GA implementation uses as selection operator newly de-
signed fine grained tournament selection, generalization 
of classical tournament selection. New selection operator 
keeps all good features of classical tournament selection. 
 
For SPLP, problem fine grained tournament selection 
significantly outperforms both rank based and classical 
tournament selection. 
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