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ABSTRACT

A genetic algorithm (GA) is proposed for solving one
continuous min-max global optimization problem arising
from the synthesis of radar polyphase codes. GA
implementation is successfully applied to this problem and
it solves instances with n up to 20. Computational results
are compared to other algorithms (implicit enumeration
technique, Monte Carlo method and tabu search). In some
cases, GA outperforms all of them.

1. INTRODUCTION

Problems of optimal design are important part of the
global optimization. In [1] is proposed one such
engineering problem: spread-spectrum radar polyphase
code design (SSRPCD).

1.1.  Problem Definition

The SSRPCD problem can be formulated as follows:

global min  f(x)                                  (1)
x ∈ X

f(x) = max { | ϕ1(x)|, | ϕ2(x)|, ..., | ϕm(x)| }

      X = {(x1, x2, ... , xn) ∈ Rn | 0 ≤ xj ≤ 2π,  j=1, 2, ..., n}

where m = 2n-1 and
      

  ϕ2i-1(x) = ∑ ∑
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Problem also can be formulated using by additional m
functions:

f(x) = max {ϕ1(x), ϕ2(x), ...,  ϕ2m(x)}       (2)

where

ϕm+i(x) = - ϕi(x),   i=1, 2, ..., m

In GA approach can be used formulation (1) with only
m=2n-1 functions. The objective function of this problem
for the case n = 2 is illustrated in Fig. 1.
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Fig. 1. Objective function for n = 2

Note that function is not differentiable and SSRPCD
problem is inappropriate for solving by many numerical
optimization methods. In addition, it has been proved that
this problem is NP-hard [2], and requires some other
methods for solving it. Because GA do not require
differentiability and is successfully applied for solving
some NP-complete problems, it may be good choice for
solving this problem, as can be seen in section 3.

1.2.  Literature Survey

Formal mathematical formulation and engineering
background of this problem is given in [1]. In that paper is
also given a technique for solving SSRPCD problem by
nonlinear programming. Improved results of that heuristic
method are presented in [3].

A one optimal technique for solving SSRPCD problem by
implicit enumeration is described in [4]. Although the
results in [4] show that the exact method was very
successful on problems of linearly constrained separable
concave minimization, it is not very suitable for this
problem. By implicit enumeration are optimally solved
only instances of smaller size (n = 2,3,4,5). Running time
for proposed method grows exponentially, so this
technique is not capable to compute solutions for n > 5.

In [2, 5] is proposed a Multi Level Tabu Search (MLTS)
strategy for solving this problem, where each level is
characterized by a different size of the move step.
Satisfactory results are obtained with the two- and three-
level strategy for dimensions not greater than 10. Results

are also compared to standard Monte Carlo method and
MLTS gave much better results with respect both to the
objective function value and to the computational effort.

1.3. Genetic Algorithms

Genetic algorithms (GAs), the development of which is
inspired by the analogy of natural evolution model, are
robust and adaptive methods for solving search and
optimization problems. GAs traditionally works with a
population of items, as candidate solutions of search
space. Population most commonly contains 10-200 items,
that are usually fixed-length strings over some given,
finite alphabet. Fitness function is defined to evaluate the
quality of the items in population. The goal of the GA is
to produce better items by using the stochastic genetic
operators. Most commonly used genetic operators are
selection, crossover and mutation.

The selection operator that produces a new population
favors the reproduction of the items of better fitness value
more than the one of the worse ones. As children inherit
pieces of their gene patterns from parents, GA implicitly
exploits the correlation between inner structure and
quality of items. Crossover applies to one or more parents
and exchange genetic material between them, with the
possibility that good parents can generate better new
candidates (children). Mutation involves the modification
of the value of each solution gene with some small
probability pmut. The role of mutation is to prevent the
premature convergence of the GA to suboptimal solutions,
by restoring lost or unexplored genetic material into the
population.

Initial population is randomly initialized in most cases,
but some GA implementations allow some heuristic
initialization of the population. The basic principles of
GAs were first laid down rigorously by Holland [6] and
later are well described in many texts. Some of interesting
survey articles are [7, 8, 9, 10]. Informal description leads
to the rough outline of a GA is given in Fig. 2.

Input_Data();
Population_Init();
while not Finish() do

/* Npop  is the number of individuals in a 
population pi is objective value of ith 
individual.*/

for i := 1 to Npop do pi: = Objective_Function(i)
endfor;
Fitness_Function();
Selection();
Crossover();
Mutation();

endwhile
Output_Data();

Fig. 2. Pure genetic algorithm



Extensive studies of solving the combinatorial
optimization problems with focus to NP-hard problems,
through GAs, are given in [11, 12, 13, 17]. For detailed
overview of this scientific area, reader may consult some
comprehensive bibliographies, for example [14, 15].

2. GA IMPLEMENTATION

Outline of GA implementation for solving SSRPCD
problem is schematically described in Fig. 3.

Input_GA_Parameters();
Input_SPLP_Data();
Population_Init();
while not Finish() do

for i := Nelite+1 to Npop do
/*      Nelite - number of elite individuals

  string(i) – genetic code of i-th individual  */
if Contain(cache_memory, string(i))
then  pi := Get(cache_memory, string(i));
else

pi := Objective_Function(i);
Put(cache_memory, string(i));

endif
endfor
Fitness_Funct_and_Rank_Based_Selection():
One-Point_Crossover();
Simple_Mutation();

endwhile
Output_Data();

Fig. 3. Outline of GA implementation

2.1. Representation

Real valued binary code is used for encoding variables xk

(k = 1, 2, …, n). Each of them is represented by one 32-bit
binary number. This representation is improved by Gray
codes, because they are useful in combination with
applied genetic operators. In practice, this method
produced better result than pure real valued binary code,
but differences is not too big.

2.2. Fitness function and selection

Rank-based selection is applied as selection operator, with
rank value that decreases linearly from the best individual
rbest = 2.5 to the worst individual rworst = 0.712 by step of
0.012. In this rank-based selection scheme fitness of
particular individual is equal to its rank, and then
individuals go to the roulette, with chance proportional to
its fitness, as can be seen in Fig. 4.

QSort(population);
for i: =1 to Npop do
     /*   fi -  fitness of the i-th individual  */
    if Duplicate(string (i)) then  fi := 0

 else fi := rank(i);
    endif

endfor
f := Sum_Fitnesses(population) / Npop;

for i := 1 to Nelite do

if fi ≥ f  then fi := fi - f
 else fi := 0;

endif
endfor
Roulette_Selection(population);

Fig. 4. Fitness function and rank-based roulette selection

In GA implementation for solving SSRPCD problem, this
selection scheme successfully prevents premature
convergence in local optima and loosing the genetic
material. This is large improvement when it is compared
to experimental results for simple roulette selection, which
concords with the direction in literature ([9] and [16]).

2.3. Crossover

One-point crossover is performed (see Fig. 5.), that
provides minimal disruption of individual’s genes. It is
important part for success of GA, because interaction
among genes in individual’s gene code is not too big.
Crossover rate is pcross = 0.85, and approximately 85%
pairs of individuals exchanged their genetic material.

Crossover position       ↓
1. parent XXXXXX
2. parent YYYYYY
1. offspring XXXYYY
2. offspring YYYXXX

Fig. 5. One-point crossover

2.4. Mutation

The simple mutation is used, but for faster execution, it is
performed by using a Gausian (normal) distribution. Let
Nmut = (Npop - Nelite) * pmut be an average number of
mutations in population and σ2 = (Npop - Nelite) * pmut * (1 -
pmut) a standard deviation. Number of mutations is
generated by a random pick in Gausian (Nmut, σ2)
distribution. After that, positions of mutation sites in the
population strings are randomly generated and their
number being the same as the number of mutations.

Only the muted genes are processed by this method, while
other genes in population are not. Number of muted genes
is relatively small when compared to entire population,
which improves the run-time performance of a simple
mutation operator without changing its nature.

Mutation rate pmut depends on problem size and changes
as GA run, because the diversity of the genetic material is
large at the first generation and decreases with the time.
This adaptation of mutation rate promotes a fast
convergence to good solutions during the starting



generations and introduces more diversity for escaping
from local optima during later stages. The mutation rate
for instance of dimension n at generation t is given by
formula (3):

pmut (n, t) = 
n

15.0
+ 

n

25.0
 ⋅ 2 - t / 1000      (3)

Example 1.  For instance n = 5, in first generation is
pmut (5, 0) =  0.03 + 0.05 = 0.08, after 1000 generations
pmut (5, 1000) =  0.03 + 0.025 = 0.055 and at the end
pmut (5, 10000) =  0.03 + 0.0000488 = 0.0300488 .

As we see from experimental results presented in Table 1,
this mutation rate is good compromise between
exploration and exploitation components of GA search
applied to our problem.

2.5. Generation Replacement Policy

The population size is Npop = 150 individuals. Steady-state
generation replacement with elitist strategy is used. In
each generation, only 1/3 of population (50 individuals) is
replaced. Remaining 2/3 of population is directly passed
to the next generation. Those elitist individuals do not
need reevaluation (their objective value is already
evaluated).

Every elite individual is passed directly into the next
generation, giving one copy of it. To prevent undeserved
domination of elite individuals over the population their
fitness are decreased by formula (4):

fi = 
f f f f

f f
i i

i

− >
≤





,
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 1 ≤ i ≤  Nelite       (4)
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 is average fitness in entire

population.

In this implementation, duplicate individual strings in
population are discarded, and more diversity of the
population is maintained to avoid premature convergence.
Particular individual is discarded by setting its fitness to
zero. Therefore, the duplicate individual strings are not
removed physically but their occurrence is discarded in
next generation.

This technique will be effective against the lack of variety
in the population, maintaining maintain the diversity of
genetic material. Discarding of duplicate strings decreases
the appearance of dominating items in population, and
effectively decreases the possibility of premature
convergence in local optimum. This is a very important
factor of successful working GA, particularly in cases of
large size test problems.

Example 2. If population contains 5 items 0101, 1010,
0101, 0001, 1010 with fitnesses f1, f2, f1, f4, f2 respectively
then after this phase they are equal to  f1 ,  f2, 0, f4 , 0.

2.6. Other Parameters

Initial population is randomly initialized. Initialization by
some heuristics is experimented and fitnesses in first
generation are better, but gradient in the fitness function
of subsequent generations is significantly smaller, and
overall obtained results are worse.

The maximal number of generation is Ngener = 2000*n.
The finishing criterion is also based on their number of
consecutive generations with unchanged best individual. If
that number exceeds value Nrepeat = 1000*n, execution of
GA is stopped.

2.7. Caching the GA

Finally, run-time performance of the GA is improved by
caching technique. The idea of caching is used to avoid
the attempt to compute the same objective value
repeatedly many times. Instead of that, objective values
are remembered and reused. If program has computed
objective value for a particular item string, and the same
string appears again, the cached values are used to avoid
computing twice its objective value.

Least Recently Used (LRU) strategy, which is simple but
effective, is used for caching GA. Caching is implemented
by hash-queue data structure. More information about
caching GA can be found in [17, 18].

3. COMPUTATIONAL RESULTS

In this section are given results obtained by GA
implementation, and compared to other methods
mentioned in section 1.2. Optimal solutions or best-
obtained results through all methods is emphasized by
bold typeface and underlined.

3.1. Results of GA

The execution is performed on a Pentium III/600MHz PC,
with 20 independent runs per problem instance. Number
of function evaluations is approximately equal to (5).

(Npop - Nelite) * Ngener ≈ 100 000 * n
(5)

Because all other methods presented only best results in
multiple runs, we also report results on that way.



Table 1. Results obtained by GA

n Best solution No. gener Time (sec)
2 0.3852 3980 1.64
3 0.2610 6000 2.83
4 0.0560 8000 4.53
5 0.3374 10000 6.71
6 0.4645 12000 9.79
7 0.5232 14000 13.64
8 0.4328 16000 18.48
9 0.3386 18000 24.23

10 0.4709 20000 31.52
11 0.6387 22000 40.11
12 0.6786 24000 50.06
13 0.8307 26000 61.93
14 1.0042 28000 75.58
15 0.9674 30000 91.43
16 1.0385 32000 109.02
17 1.0984 34000 129.36
18 1.3503 36000 152.41
19 1.2291 38000 177.86
20 1.4753 40000 206.45

3.1. Results obtained by other methods

Optimal values given by implicit enumeration technique
([4]) are presented in Table 2. As can be seen from it and
are mentioned earlier, number of iterations (and running
time) grows exponentially and this approach is able to
solve only instances of small size (n ≤�5).

Table 2. Implicit enumeration technique

n Optimal
value

Number of
iterations

Avg. num. of
subregions

2 0.3852 486 30
3 0.2610 624 29
4 0.0560 8321 388
5 0.3371 97496 3768

The results of Multi-Level Tabu Search is given in Table
3. For n ≤�5 are applied two-level strategy, while for n ≥��
DUH�XVHG�WKUHH�OHYHOV��,Q�WKLUG�FROXPQ�DUH�JLYHQ�UHVXOWV�RI
LPSURYHG� DSSURDFK� RI�0/76� LQ� FRPELQDWLRQ� ZLWK� ORFDO
VHDUFK�IRU�LPSURYLQJ�WKH�WHUPLQDO�SRLQW��2WKHU�parameters
for the MLTS is described briefly described in [2, 5].

Table 3. Multi-Level Tabu Search (MLTS)

n MLTS
best sol.

MLTS+LS
best sol.

TS
iterations

Func.
eval.

2 0.3852 - 7581 151 620
3 0.2610 - 5280 132 000
4 0.0599 - 2839   85 170
5 0.3418 - 3123 109 305
6 0.4603 0.4588 5307 212 280
7 0.4985 0.4976 1919   86 355
8 0.4288 0.3871 7385 369 250
9 0.3820 0.3492 7297 401 335

10 0.4615 0.4342 7175 430 500

Table 4. contains results obtained by standard Monte
Carlo method with 10 million points, presented in [2].

Table 4. Monte Carlo method

n Best
solution

2 0.3857
3 0.2687
4 0.0823
5 0.3988
6 0.5000
7 0.6772
8 0.6179
9 0.8802

10 0.9106

SSRPCD problem is also solved by nonlinear
programming method and results given in [3] are
presented in Table 5.

Table 5. Nonlinear programming

n Best
solution

3 0.261447
4 0.057048
5 0.340255
6 0.590729
7 0.517258
8 0.488383
9 0.350310

10 0.589604

3.3. Result comparison

As can be seen from Tables 1-5 and Fig. 6. Monte Carlo
method is worst for all instances (never achieved optimal
solution (Opt.) or best obtained result (BS)) although it
perform the most number of function evaluation.



Nonlinear programming method also never achieved
optimal solution or best obtained result, but it is quite
better than MC and not too far from Opt (BS).

GA and MLTS both achieve optimal solution for n = 2
and n = 3. Result of GA is still optimal for n = 4.

For n ≥ 6 optimal solution is not known, and MLTS in
average produce better results (BS for n = 6, 7, 8 and 10)
than GA (BS for n = 9), but differences are not very large.

Results of other approaches in [1-5] are not reported for
n ≥ 11 and it is not possible to compare them with GA.
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Fig. 6.  Result comparison by objective value

Errors from optimal solution (BS) for all methods except
implicit enumeration (it has not produce any errors in the
cases when finishing its work) and Monte Carlo (has very
large error) is displayed in Fig. 7.
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Fig. 7. Errors from Opt. (BS)

4. CONCLUSION

In this paper is proposed a new GA-based approach for
designing a spread spectrum radar polyphase code. Using

the representation by Gray codes, rank-based selection
and steady-state generation’s replacement with elitist
strategy, the convergence of GA is significantly improved.
Running time is additionally improved by caching GA
technique.

By GA implementation is solved SSRPCD instances up to
n = 20. Computational results indicate that GA
implementation is comparable to other methods for all
instances. Moreover, in some cases is obtained better
results compared to all presented methods.

The research presented in this paper can be extended by
the hybridization of GA with other methods, possible
parallelization and application to other similar global
optimization problems.
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