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Introduction

Partitioning large biological networks into smaller
clusters can help in discovering new properties and
functionalities of a particular structure. In this work we
deal with the partitioning of the edge-weighted
networks into k-plex components, where a set of somen
vertices in a network is a k-plex if the degree of each
vertex in the induced subnetwork is at least n-k. The aim
of the maximum edge-weight k-plex partitioning
problem (Max-EkPP) is to find the k-plex partition with
the maximum total weight.

Biological justification for using k-plex partitiong instead of clique partitiong

Biological networks are often sparse, therefore many potentially useful information about the interference of biological objects can be neglected if such a restrictive condition is
involved. Among many other clique based approaches used for example in protein threading analysis (Akutsu, T. et al. 2006) and other relaxation approaches which can be foundin
literature (Pattillo, J. etal. 2013) in Max-EkPP, partitioning follows the principle that the objects in each partition are still highly connected in a particular way, but not so restrictively
to form a clique. By relaxing the cliques into more sparse graphs, biological objects are grouped in semantically of functionally logical groups which we call k-plexes, having in mind
that the total sum of weights in all partitions still should be as great as possible.

Our approach

We partition some sparse metabolic networks into k-plexes by a local search heuristic method. Following the approach presented in (Martins, 2016.), we apply our algorithm on
the metabolic networks. While the exact algorithm based on the integer linear programming (ILP) formulation proposed in (Martins, 2016.) can solve only some of such large-
scaled networks, our algorithm can successfully find the solution of any network, including very large- scaled ones. Comparing to the ILP from (Martins, 2016.), our approach
succeeds to find most of known optimal solutions, also finding high quality solutions for those instances for which the optimal solutionis not known.

Building the network from metabolic reactions

In the example, the network is modeled from the list of 1393 metabolic reactions, taken from (Forster, J. et al., 2003). Metabolites are represented as nodes and two metabolites
are adjacentif they figure in at least one common reaction. In a dual approach, metabolic reactions are considered as nodes, while two reactions are adjacent if they share at least

one same metabolite.

"ADP" + "ATPM" + "Orthophosphate" -> "ADPM" + "ATP" + "H+M" + "OrthophosphateM"
"Acetyl=CoA" + "ATP" + "CO2" -> "ADP" + "Malonyl=CoA" + "Orthophosphate"

"ADP" + "ATP" -> "Orthophosphate" + "P1,P4=Bis(5'=adenosyl) tetraphosphate"

"ADP" + "Dethiobiotin" + "Orthophosphate" -> "7,8=Diaminononanoate" + "ATP" + "CO2"
"ATP" -> "ADP" + "H+EXT" + "Orthophosphate"

"ATP" -> "ADP" + "Orthophosphate"

"ATP" + "L=Glutamine" + "UTP" -> "ADP" + "CTP" + "L=Glutamate" + "Orthophosphate"

Example:
Metabolites "ADP" and "ATP" participate in 7 common reactions
Metabolites "Orthophosphate" and "CO2“ participate in 2 common reactions

Description of the heuristic
algorithm

The considered problem is NP hard, so exact algorithms
can not be used for solving large-scaled networks in a
reasonable time. Therefore, the usage of heuristic
methods is justified. In our approach, we use a local
search technique for improving the solution quality. The

Parallel edges are merged into a single edge, with the weight equals to the total number of common reactions

Our approach

 opr/sest| 1P | __Best _|__Ave | Time[s] licomponents| component

algorithm starts with an initial solution in which each Density ILP
Yerte>'< belongsto |t§ own. com.ponent—smgleton. In e.ach 1 1866 OPT 1862 1857.3 1698.42 504 3
iteration, the algorithm is trying to regroup the vertices
consecutively swapping the components of pairs of SC-NIP-m-t1 991 4161 0.00848 2 1714 N/A best 1292.6 131.52 476 7
vertices. Since infeasible partition can appear by a swap, 3 1395 N/A best 1074.7 155.04 567 8
the algorithm also takes into the consideration the 110 5
degrees of vertices in each partition, favoring feasible 1 910 OPT OPT 910 22.15
solutions vs infeasible ones. The algorithm stops if one of SC-NIP-m-t3 177 269 0.01727 2 1021 OPT OPT 1013 14.765 99 7/
two conditions is satisfied: total number of iterations is
90 3

reached (in our case 25000), or the best found solution is - L N/A best LUk o) 10
notimproved in 10000 iterations. 1 723 OPT OPT 723 2.95 43 4

SC-NIP-m-t5 /5 34 0.03027 2 801 OPT OPT 801 2.45 39 4
Graphical representation 3 887 OPT OPT 869.1 3.22 36 5

In order to further investigate the results obtained by
our heuristic technique, we decided to graphically
interpret the results by using a well known software
platform for visualizing molecular interaction networks
Cytoscape (Shannon, P. et al. 2003) . We use this
software to present our results in more suitable way,
enabling biologists to better understand the relations
between the considered objects. Therefore, we adopted
our results in a way that can be easily interpreted by the
Cytoscape software,getting more suitable
representation of the obtained results.

Experimental results

All experiments are performed on the Intel i7-4770 CPU @3.40 GHz with 8 GB RAM and Windows 7 operating system. For each execution, only one thread/processor is used. The
algorithmisimplementedin C programming language and compiled with Visual Studio 2013 compiler.

For the purpose of this poster presentation, we applied our algorithm on three metabolicinstances (Martins, 2016.), namely on SC-NIP-m-t1, SC-NIP-m-t3 and SC-NIP-m-t5,
fork=1,2,3.Recall thatif k=1, the partitionsare cliques. Foreachinstance, 10independents runs were performed.
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Conclusions

The maximum edge-weight k-plex partitioning problem
is of a great interest from both theoretical and practical
points of view. This work contains some preliminary

results obtained by applying the local search heuristic
method on some metabolite networks.

In near future, we plan to improve our algorithm to be
more robust and accurate and to apply it to other real life
biological and artificial instances from literature.
Obtained results can be used for discovering new
biologically importantinformation.
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